ECON 575: Assignment 3

Due: Friday 16 November, 4:30p.m.

Question 1

Suppose that we have *n* independent observations from a Poisson distribution, whose p.m.f. is:

$$p(y_i | \lambda) = \lambda^{y_i} \exp{-\lambda} / y_i!$$
; $y_i = 0, 1, 2, \dots, \lambda > 0$

Suppose that, a priori, we are totally ignorant about the value of λ .

Prove that the Bayes estimator of λ , when the loss function is quadratic, is $\overline{y} = (\sum_{i=1}^{n} y_i / n)$.

[Hint: The p.d.f. for a Gamma distribution is $p(x) \propto x^{\alpha-1} \exp\{-\beta x\}$; $\alpha, \beta, x > 0$. The mean of this distribution is (α/β) .

Total: 6 marks

Question 2

Suppose that Y is **uniform** on the interval $[0, \theta]$, and that we have a random sample of n observations on Y.

Let the prior p.d.f. for θ be:

$$p(\theta) = ak^a \theta^{-(a+1)}$$
 ; $\theta \ge k$; $a > 0$.

(This is the p.d.f. for a Pareto distribution.)

(a) Show that this is the natural conjugate prior for θ .

(4 marks)

(b) Obtain the full posterior density for θ , including the normalizing constant.

(5 marks)

(c) Find the mean of the prior distribution.

(4 marks)

(d) What is the Bayes estimator of θ if the loss function is quadratic?

(1 mark)

Total: 14 marks

Ouestion 3

You probably know that J. M. Keynes made many important contributions to probability theory and statistics (as well as to economics, of course). His *Treatise on Probability* is a classic work that makes seminal contributions to the "subjective" theory of probability used by Bayesians. He also provided Keynes, 1911) the first modern treatment of "Laplace's (1774) first law" - if we have an odd number of observations, "n", then the value of θ that minimizes the expression

 $\sum_{i=1}^{n} |y_i - \theta|$ is the median of the y_i 's. (An odd number is needed to ensure that the median is

unique.) Now suppose that we have a random sample of "n" (which you can assume to be an odd number of) observations from a Laplace (or "double exponential") distribution. That is, the density function for an individual y_i is:

$$p(y_i | \theta, \lambda) = (2\lambda)^{-1} \exp\{-|y_i - \theta|/\lambda\}; -\infty < y_i < \infty ; \lambda > 0.$$

(a) Prove that the MLE for θ , say $\hat{\theta}$, is the median of the sample, and that the MLE for λ is

$$\hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{\theta}|.$$

(5 marks)

(b) It can be shown that $E(y_i) = \theta$ and $E(y_i^2) = (2\lambda^2 + \theta^2)$. Suppose that we want to provide a unitless measure of the variability of the data. One such measure is the "coefficient of variation", $cv = \sqrt{\text{var.}(y_i)} / E(y_i)$. Provide a consistent estimator for cv. What else can you say about the asymptotic properties of your estimator?

(5 marks)

(c) Now, suppose we **know** θ , but that we are totally **ignorant** about λ . Obtain the posterior density for λ , and derive the Bayes' estimator of this parameter when we have a zero-one loss function. Do this estimator and the MLE converge in probability to λ at the same rate as $n \to \infty$?

(10 marks)

References: Keynes, J. M. (1911), "The principal averages and the laws of error which lead to them", *Journal of the Royal Statistical Society, Series A*, 74, 322-328.

Laplace, P. (1774), "Mémoire sur la probabilité des causes par les èvénemens", *Mémoires de Mathématique et de Physique*, 6, 621-656.

Total: 20 marks

Question 4

Consider a Binomial random variable. Let x denote the number of "successes" in n independent trials, and let θ be the probability of a "success". Assume that out prior information about θ can be represented by a "Beta" density:

$$p(\theta) \varpropto \theta^{a\text{-}1} \left(1 - \theta \right)^{b\text{-}1} \ ; \ a, \, b > 0 \ ; \ 0 \leq \theta \leq 1.$$

(a) Prove that, under a quadratic loss function, the Bayes estimator of θ is given by

$$\theta^* = (x + a) / (n + a + b).$$

(6 marks)

(b) Compare this estimator to the MLE of θ .

(4 marks)

Total: 10 marks

Question 5

Suppose that we have a sample of 'n' random observations from a normal population whose mean is *known*, but whose variance is unknown. We wish to estimate the latter parameter using Bayesian inference.

(a) Show that the natural-conjugate prior for the "precision", $\tau = \sigma^{-2}$, is a Gamma density. (See Question 1 for the definition of this distribution's p.d.f.)

(5 marks)

(b) Give the formulae for the Bayes estimator of this precision parameter under both quadratic and zero-one loss functions.

(5 marks)

(c) What would be a consistent estimator for the variance itself under each of these loss functions?

(2 marks) Total: 12 marks

Question 6

Suppose that we have data that follow a Poisson distribution, with parameter, θ .

We want to test the two competing hypotheses, H_1 : $\theta = 1$, and H_2 : $\theta = 2$.

(a) Assume that both hypotheses are deemed to be equally likely, *a priori*. Compute the Bayesian Posterior Odds in favour of H_1 , when n = 3 and the sample average is 1.2.

(5 marks)

(b) Suppose that we have the following loss table:

State of the World

		H_1 True	H_2 True
Action	Accept H_1	0	3
	Accept H ₂	1	0

Which hypothesis would you choose?

(3 marks)

(c) What conclusion would you reach is the prior odds in favour of H_2 were 2 to 1, and the sample mean was 1.5 (with n=3)?

(5 marks)

Total: 13 marks

TOTAL: 75 Marks