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1. Introduction

In many statistical applications involving the use of “count” (i.e., non-negative

integer) data, a characteristic of the sample is that it contains far too many zero-

valued observations to be plausibly modelled with the Poisson or negative binomial

distributions. This poses a challenge for the researcher, and various approaches have

been suggested to deal with this phenomenon. These include, among others, the

use of ‘hurdle’ models (Cragg, 1971; Mullahy, 1986) and the application of quantile

regression methods to ‘smoothed’ count data as outlined by Machado and Santos

Silva (2005). The zero-inflated Poisson (ZIP) model, proposed by Lambert (1992)

following Cohen (1963) and Johnson, Kemp and Kotz (2005), is often an attractive

choice in such situations. This model posits two regimes, one in which the data are

Poisson-distributed, and one in which only zero values are generated, and nature

chooses between them randomly. The model easily allows for the introduction

of covariates, both through the Poisson mean, and through the regime selection

mechanism. An attractive by-product of the model is that can account for “over-

dispersed” data – that is, data for which the variance exceeds the mean, which is

also a very commonly encountered phenomenon.

The ZIP model is typically estimated by the method of maximum likelihood, so

sharp inferences are assured if the sample size is sufficiently large. However, the

properties of the maximum likelihood estimator (MLE) for the ZIP model have not

previously been investigated for the case where the sample size is small, and so

small-sample bias is a potential concern. This paper addresses this issue using both

analytic and simulation-based methods.

Specifically, we find that the MLE for the parameters of the ZIP model exhibits

very little bias, even in relatively small samples. This finding is very positive for

practitioners. In addition, the bias that is present can be almost eliminated by using

the general first-order analytic bias correction proposed by Cox and Snell (1968),

and others. Alternatively, a parametric bootstrap bias correction can be used with

approximately equal success. Both of these approaches deal with the bias without

compromising the mean squared error of the MLE.

In the next section we provide a more formal description of the ZIP model.

Section 3 discusses the analytic bias reduction procedure of Cox and Snell (1968),

and we apply this to the ZIP model in section 4. The performance of this bias-

adjustment technique is compared, in section 5, with that of a bootstrap-based

bias adjustment; and a simple illustrative application is provided in section 6. Our

conclusions appear in section 7, and some supplementary mathematical results are

given in the appendix.
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2. Zero-Inflated Poisson Process

Lambert (1992) introduced the zero-inflated Poisson regression model with co-

variates to model the number of manufacturing defects from a soldering experiment

conducted by AT&T Bell Laboratories. Although the standard Poisson model al-

lows for the presence of some zeros, the zero-inflated Poisson model allows excess

zeros to arise from a special data generating processes encompassing two regimes.

To use Lambert’s example, in the first regime, manufacturing defects do not occur

because the equipment is set up properly. In the second regime, defects, while

not inevitable, are possible and their occurence follows a Poisson process. Another

example of a process that may be characterised by excess zeros is the demand for

recreation (Cameron and Trivedi, 1998, p. 123). For instance, someone may report

‘zero’ fishing trips in a particular month because they do not fish, or they do fish,

but didn’t happen to go fishing during the time frame of interest.

Formally, suppose that in the first regime, RI , every observation is a zero count,

while in the second regime, RII , observations are generated according to a Poisson

process. In addition, suppose that:

P (yi) =

 ω

(1− ω)

yi ∈ RI
yi ∈ RII

i = 1, 2, . . . n.

The zero-inflated Poisson distribution is given by:

P (yi) =

 ω + (1− ω)e−λ

(1− ω)e−λλy/y!

yi = 0

yi 6= 0
i = 1, 2, . . . n

As with the Poisson distribution, covariates can be introduced through the condi-

tional mean of the Poisson process. That is, we can assign λi = exp(x
′

iβ), where

xi is the ith observation on the vector of covariates, and β is a (k × 1) vector of

parameters. The mean and variance of the ZIP model are E(Yi|xi) = (1 − ω)λi,

V ar(Yi|xi) = (λi + ωλ2i ) . The probability that an observation comes from RI can

also be determined by covariates, by assigning ω = ωi = exp(z′iγ)/(1 + exp(z′iγ)),

where zi is the ith observation on a vector of (possibly different) covariates and γ is

a (p×1) vector of parameters. Some recent studies using a ZIP specification include

Crépon and Duguet (1997), Böhning et al. (1998), and Carrivick et al. (2003).

3. Bias-Reduced Maximum Likelihood Estimation

Bartlett (1953a) showed that, for a single parameter log-likelihood function sat-

isfying the usual regularity conditions, it is possible to analytically approximate the

bias of the maximum likelihood estimator, θ̂, to O(n−1) - even when θ̂ does not

admit a closed-form expression. Haldane and Smith (1956), and Shenton and Bow-

man (1963) also derive expressions for this bias of the MLE for the one-parameter

case. Bartlett (1953b) and Haldane (1953) obtain analytic approximations for two-

parameter log-likelihood functions. The methods undertaken by these researchers
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typically involve Taylor-series approximations that can become cumbersome for the

multi-parameter case - see Shenton and Bowman (1977). The latter authors call the

methods employed by Cox and Snell (1968) ”an adjusted order of magnitude pro-

cess”. Giles (2012) argues that this method is easy to apply to the multi-parameter

case, especially with respect to first-order bias approximations.

Let l(θ) be the log-likelihood function where the p-dimensional vector of param-

eters, θ, is to be estimated using a sample of n observations. Assume that the

log-likelihood function is well behaved and satisfies the usual regularity conditions

(Duguét, 1937; Cramér, 1946).

The joint cumulants of the derivatives of l(θ) are:

kij = E
(

∂2l
∂θiθj

)
; i, j = 1, 2, . . . , p .

kijl = E
(

∂3l
∂θi∂θj∂θl

)
; i, j, l = 1, 2, . . . , p .

kij,l = E
[(

∂2l
∂θi∂θj

)(
∂l
∂θl

)]
; i, j, l = 1, 2, . . . , p.

The derivatives of the cumulants are denoted:

k
(l)
il = ∂kij/∂θl; i, j, l = 1, 2, . . . , p.

Fisher’s information matrix is K = {−kij}, each element of which is O(n). Cox and

Snell (1968) showed that with a sample of independent data that is not necessarily

identically distributed, the bias of the sth element of θ̂s can be written as:

Bias(θ̂s) =

p∑
i=1

p∑
j=1

p∑
l=1

ksikjl[
1

2
kijl + kij,l] +O(n−2); s = 1, 2, . . . , p

where kij is the (i, j)th element of the inverse of the information matrix, K. Fur-

thermore, Cordeiro and Klein (1994) showed that the previous equation can be

written in the following convenient form, and can be applied even when the sample

data are non-independent :

Bias(θ̂s) =

p∑
s=1

ksi
p∑
j=1

p∑
l=1

[k
(l)
ij −

1

2
kijl] +O(n−2); s = 1, 2, . . . , p.

Define a
(l)
ij = k

(l)
ij − 1

2kijl ∀i, j, l = 1, 2, . . . , p and define the matrices A(l) = {a(l)ij }
∀i, j, l = 1, 2, . . . , p. After concatenating the matrices, A = [A(1)|A(2)| . . . |A(p)],

we are able to write the bias of θ̂ in the following way (Cordeiro and Klein, 1994):

Bias(θ̂) = K−1A vec(K−1) +O(n−2).

Here, vec(.) denotes the “vectorization” operator, which stacks the columns of the

matrix in question one above the other, forming one extended column vector. Fi-

nally, define the bias adjusted-MLE as:
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θ̃ = θ̂ − K̂−1Â vec(K̂−1),

where K̂ = K|θ̂ and Â = A|θ̂. One of the advantages of this method is that

these expressions can be evaluated when the likelihood equations for the concerned

problem do not admit a closed-form, analytic solution. In such situations we can

obtain bias-corrected MLE easily by means of conventional numerical methods, and

θ̃ is unbiased O(n−2).

The analytic bias-reduction techniques of Cox and Snell (1968) and Cordeiro and

Klein (1994) have been applied successfully to a range of statistical problems. For

instance, Cordeiro and McCullagh (1991) apply it to bias-correct the parameters

of generalized linear models. Cordeiro and Klein (1994) use the analytic methods

to investigate the bias of the MLE in ARMA models. Cordeiro et al. (1996) derive

closed-form bias-corrected MLE estimators of the parameters of the beta distribu-

tion. Similarly, Cribari-Neto and Vasconcellos (2002) derive bias-corrected expres-

sions for the MLE of the parameters of a restricted beta distribution. Recently,

this analytic bias-reduction strategy has been used for the half-logistic distribution

(Giles, 2012). In the above mentioned cases, the researchers find by means of Monte

Carlo simulations that the analytic methods compare favourably to the bootstrap

bias-reduced MLEs in terms of both bias reduction and mean-squared error (MSE).

4. Bias-reduced MLE For the Zero-Inflated Poisson Distribution

This paper considers bias-reduction for the MLE for the parameters of the zero-

inflated Poisson distribution. The benchmark model for this paper is inspired by

Lambert (1992), though the author cites the influence of work by Cohen (1963) and

other authors. Assuming independent sampling, the generic log-likelihood function

for this problem is given as:

l(λ, γ) =

n∑
i=1

I0log [exp(γ) + exp (−λ)]

+

n∑
i=1

(1− I0) [yilog(λ)− λ− log(yi!)]−
n∑
i=1

log(1 + exp(γ)),

where the indicator function, I0, takes the value unity when yi = 0, and zero

otherwise. The probability of an observation being in RI , ω, is modelled with a

logit specification, ω = exp(γ)/(1+exp(γ)), and we focus on a zero inflated Poisson

distribution without covariates in order to focus on the core problem.

Although we are concerned mainly with bias reduction for the estimation of the

“core” parameters of the model, γ and ω, we may also consider bias reduction for

the estimation of ω, the probability of an observation in RI . The log-likelihood for

this problem is given by:
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l(λ, ω) =

n∑
i=1

I0log [ω + (1− ω)exp(−λ)]

+

n∑
i=1

(1− I0) [yilog(λ)− λ+ log(1− ω)− log(yi!)] .

It should be noted that although ω̂ can be derived directly for γ̂, by invariance, the

non-linear relationship between ω and γ precludes a similar simple manipulation

of the bias. To conserve space, the analytic expressions for bias-reduced MLE

involving λ and ω are given in the Appendix.

To proceed, we require the derivatives of the log-likelihood function up to the

third order. Define eγ + e−λ ≡ α and 1 + eγ ≡ β. Then:

∂l

∂λ
=

n∑
i=1

{
−Ioe

−λ

α
+ (1− Io)

yi − λ
λ

}
∂l

∂γ
=

n∑
i=1

{
Ioe

γ

α
− eγ

β

}
∂2l

∂λ2
=

n∑
i=1

{
−Ioe

−2λ

α2
+
I0e
−λ

α
− (1− Io)

yi
λ2

}
∂2l

∂λ∂γ
=

n∑
i=1

{
I0e

γ−λ

α2

}
∂2l

∂γ2
=

n∑
i=1

{
I0e

γ

α
− eγ

β
− I0e

2γ

α2
+
e2γ

β2

}
∂3l

∂λ3
=

n∑
i=1

{
−2I0e

−3λ

α3
+

3I0e
−2λ

α2
− I0e

−λ

α
+ 2(1− Io)

yi
λ3

}
∂3l

∂λ2∂γ
=

n∑
i=1

{
2I0e

γ−2λ

α3
− I0e

γ−λ

α2

}
∂3l

∂γ2∂λ
=

n∑
i=1

{
I0e

γ−λ

α2
− 2I0e

2γ−λ

α3

}
∂3l

∂γ3
=

n∑
i=1

{
2I0e

3γ

α3
− 3I0e

2γ

α2
+
I0e

γ

α
− 2e3γ

β3
+

3e2γ

β2
− eγ

β

}
.

We now determine the joint cumulants of the log likelihood function, first noting

that E(yi) = λ
1+eγ since E(yi) = (1−ωi)λi and ωi = eγ

1+eγ ≡
eγ

β . Note further that,

E(I0) = ω + (1− ω)eλ= eγ+e−λ

1+eγ ≡
α
β .
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k11 = n

(
−e
−2λ

βα
+
e−λ

β
− 1

βλ

)
k12 =

neγ−λ

βα
= k21

k22 = n

(
−e

2γ

βα
+
e2γ

β2

)
k111 = n

(
−2e−3λ

βα2
+

3e−2λ

βα
− e−λ

β
+

2

λ2β

)
k112 = n

(
2eγ−2λ

βα2
− eγ−λ

βα

)
= k121 = k211

k122 = n

(
eγ−λ

βα
− 2e2γ−λ

βα2

)
= k212 = k221

k222 = n

(
−3e2γ

βα
+

3e3γ

β2
+

2e3γ

βα2
− 2e3γ

β3

)

k
(1)
11 = n

(
−e
−3λ

βα2
+

2e−2λ

βα
− e−λ

β
+

1

βλ2

)
k
(2)
11 = n

(
eγ−2λ

β2α
+
eγ−2λ

βα2
− eγ−λ

β2
+

eγ

β2λ

)
k
(1)
12 = n

(
eγ−2λ

βα2
− eγ−λ

βα

)
k
(2)
12 = n

(
eγ−λ

βα
− e2γ−λ

β2α
− e2γ−λ

βα2

)
k
(1)
22 = −ne

2γ−λ

βα2

k
(2)
22 = n

(
e3γ

βα2
+
e3γ

β2α
− 2e2γ

βα
− 2e3γ

β3
+

2e2γ

β2

)

a
(1)
11 = k

(1)
11 −

1

2
k111 = −ne

γ−λ

2βα
= a

(1)
12 = a

(1)
21 = a

(1)
22

a
(2)
11 = k

(2)
11 −

1

2
k112 =

n(λeγ−λ − λe2γ−λ + 2eγ−λ + 2e2γ)

2β2αλ

a
(2)
12 = k

(2)
21 −

1

2
k122 =

n(eγ−λ − e2γ−λ)

2β2α
= a

(2)
21

a
(2)
22 = k

(2)
22 −

1

2
k222 =

n(e3γ − e2γ + e2γ−λ − e3γ−λ)

2β3α

A(1) = −n
2

[
eγ−λ

βα
eγ−λ

βα
eγ−λ

βα
eγ−λ

βα

]

A(2) =
n

2

[
(λeγ−λ−λe2γ−λ+2eγ−λ+2e2γ)

β2αλ
(eγ−λ−e2γ−λ)

β2α
(eγ−λ−e2γ−λ)

β2α
(e3γ−e2γ+e2γ−λ−e3γ−λ)

β3α

]
.
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Finally, we are able to write the bias using the result of Cordeiro and Klein

(1994):

Bias

(
λ̂

γ̂

)
= K−1AV ec(K−1) +O(n−2).

The bias-adjusted estimators are given as :(
λ̃

γ̃

)
=

(
λ̂

γ̂

)
− K̂−1ÂV ec(K̂−1),

where K̂ = K|θ̂ and Â = A|θ̂. Numerical evaluations of these estimators are

reported in the following section. It should be noted that it is quite possible for the

analytic bias adjustment to result in a negative value for λ̃. Clearly, such an estimate

would be inappropriate. This was not an issue in the simulation experiment, as is

discussed further below.

5. SIMULATION EXPERIMENT

The following Monte Carlo experiment compares the performance of the analytic

bias-reduced MLEs to that of the parametric bootstrap bias-adjusted estimator.

The actual bias and mean squared error (MSE) of the original MLEs themselves

have also been simulated in the Monte Carlo experiment. For a generic parameter,

θ , and its estimator, θ∗, we report the percent bias, 100
|θ|

[(
1
N

∑N
i=1 θ

∗
i

)
− θ
]
, and

the percent MSE, 100
θ2

[
1
N

∑N
i=1(θ∗i − θ)2

]
, based on N Monte Carlo replications.

Simulations were conducted using version 2.11.1 of the statistical software en-

vironment R (2008). The zero-inflated Poisson random variables were generated

using the VGAM package (Yee, 2010) and the log likelihood function was maxi-

mized using the Nelder-Mead algorithm in the MaxLik package (Toomet, 2008).

Each experiment comprises 100,000 Monte Carlo replications. In addition to

obtaining the biases and MSEs for the MLE and the analytic bias-adjusted MLE, we

obtain another bias-adjusted MLE using the bootstrap resampling method (Efron,

1979). The parametric bootstrap-bias-adjusted estimator is given as θ̆ = 2θ̂ −
1
NB

∑NB
j=1 θ̂j , where θ̂ is the MLE of θ from the jth of the NB = 999 bootstrap

samples. We did not encounter any negative values for λ̃ for the experimental

design that we considered, so the potential problem alluded to at the end of section

4 did not arise. Some additional investigation showed that this does not become

an issue unless sample sizes as small as n = 10 are considered in conjunction with

the parameter values assigned in Tables 1 to 3 below.

In addition to MSE, we also report a statistic suggested by Pitman (1939), which

is generated within our Monte Carlo experiment. This measure serves as a further

means by which the performance of the analytic bias-reduced estimator can be

compared with the parametric bootstrap estimator. Specifically, Pitman’s nearness
7



(PN) measure is the probability that the analytic bias-adjusted estimator is closer

to the value of the true parameter than is the bootstrap bias-adjusted estimator:

PN = Pr(|θ̃ − θ| < |θ̆ − θ|).

This probability is consistently estimated by comparing the magnitude of the

absolute difference between the bias-adjusted estimators and the true parameter

values in every repetition of the Monte Carlo simulation. The estimator θ̃ is pre-

ferred to the estimator θ̆ if PN > 0.5, for all values of θ, and PN > 0.5 for at least

one value of θ.

Tables 1 to 3 illustrate the results of the Monte Carlo simulations for three dif-

ferent pairs of parameter values, and for various sample sizes. In each case, we

report the percentage biases of the various estimators, together with the associated

percentage MSEs (in square brackets). In addition, the Pitman nearness measure

defined above is also reported in each table, to provide a different basis for com-

paring the estimators. These tables enable us to compare the relative merits of the

analytic bias adjustment and the bootstrap bias adjustment in various ways. We

see that the original, unadjusted, maximum likelihood estimators of λ and γ each

exhibit rather small percentage bias, especially the MLE of λ. This suggests that

the MLE for a ZIP model without covariates may be considered very reliable, in

practice. Both the bootstrap and analytic approach are successful in reducing the

relative bias and also lowering the relative MSE of the MLE for both parameters in

the cases that we have considered. In keeping with othe results in the recent litera-

ture, we find that the analytic bias-reduced estimators perform favourably relative

to the bootstrap estimators.
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Table 1. Results of Monte Carlo Simulations*. λ = 3 , ω = 0.3.

n λ̂ λ̃ λ̆ PN γ̂ γ̃ γ̆ PN

50 -0.1443 -0.0043 -0.0028 0.5082 4.3937 0.3840 2.1108 0.4298

[1.1445] [1.1410] [1.1426] [18.1438] [16.8406] [14.0278]

60 -0.1980 -0.0815 -0.0799 0.5056 -3.5663 0.2455 1.0216 0.4525

[0.9588] [0.9562] [0.9573] [14.8074] [13.3788] [12.5959]

75 -0.0512 0.0418 0.0426 0.5044 -2.7648 0.1754 0.4800 0.4767

[0.7599] [0.7584] [0.7591] [11.6132] [10.7766] [10.5612]

100 -0.0742 -0.0046 -0.0044 0.5045 -2.1073 0.3568 0.1598 0.4897

[0.5674] [0.5666] [0.5673] [8.5405] [8.8096] [8.0518]

125 -0.0615 -0.0059 -0.0054 0.5047 -1.6345 0.0497 0.1258 0.4959

[0.4500] [0.4494] [0.4500] [6.7238] [6.4516] [6.4382]

150 0.0482 -0.0019 -0.0020 0.5046 -1.4100 -0.0202 0.0265 0.4996

[0.3776] [0.3772] [0.3776] [5.5465] [5.3942] [5.3900]

200 -0.0337 0.0010 0.0012 0.5062 -1.0927 -0.0643 -0.0390 0.5013

[0.2837] [0.2835] [0.2838] [4.1380] [4.0333] [4.0333]

*Percent bias of estimator, with percent MSE of estimator beneath in square brackets.

The MLEs for γ are more biased than those for λ. For the former parameter,γ̃

exhibits a smaller bias than γ̆, albeit at the cost of somewhat higher MSE. This

variance-bias trade-off is especially evident in Table 1 and is also reflected in the

superior PN for γ̆. In Table 2, γ̃ performs especially well relative to γ̆ in terms of

bias reduction, MSE performance, and Pitman’s nearness measure.
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Table 2. Results of Monte Carlo Simulations*. λ = 3 , ω = 0.7.

n λ̂ λ̃ λ̆ PN γ̂ γ̃ γ̆ PN

50 -0.3889 -0.0476 -0.0152 0.5038 2.0631 -0.1523 -0.3083 0.5076

[2.8205] [2.7991] [2.8022] [15.5652] [14.4796] [14.8522]

60 -0.3311 -0.0491 -0.0301 0.5018 1.0226 0.0494 0.1240 0.5008

[2.3243] [2.3096] [2.3109] [12.7806] [12.0785] [12.1637]

75 -0.1767 0.0467 0.0578 0.5038 0.9620 0.1713 0.1856 0.50014

[1.8337] [1.8249] [1.8273] [10.0123] [9.6346] [9.6400]

100 -0.1712 -0.0051 0.0003 0.5037 0.7462 0.1500 0.1520 0.5017

[1.3558] [1.3508] [1.3520] [7.4963] [7.2859] [7.2874]

125 -0.0615 -0.0059 -0.0054 0.5047 -1.6345 0.0497 0.1258 0.4959

[0.4500] [0.4494] [0.4500] [6.7238] [6.4516] [6.4382]

150 -0.0992 0.0105 0.0136 0.5067 0.4615 0.0625 0.0683 0.5044

[0.8973] [0.8952] [0.8963] [4.9448] [4.8528] [4.8576]

200 -0.1122 -0.0303 -0.0290 0.5040 0.2769 -0.0222 -0.0228 0.50403

[0.6695] [0.6683] [0.6690] [3.7004] [3.6494] [3.6525]

*Percent bias of estimator, with percent MSE of estimator beneath in square brackets.

Table 3. Results of Monte Carlo Simulations*. λ = 5 , ω = 0.7.

n λ̂ λ̃ λ̆ PN γ̂ γ̃ γ̆ PN

50 -0.1018 -0.0200 -0.0103 0.5001 2.0631 -0.1523 -0.3083 0.4799

[1.4607] [1.4540] [1.4554] [14.2616] [13.3856] [13.3195]

60 -0.0862 -0.0191 -0.0144 0.4993 1.8800 0.0525 0.0508 0.4848

[1.2076] [1.2030] [1.2039] [11.7561] [11.1552] [11.1190]

75 -0.0322 0.0205 0.0232 0.5042 1.5611 0.1157 0.0499 0.4946

[0.9557] [0.9528] [0.9540] [9.3067] [8.9291] [8.9126]

100 -0.0230 0.0159 0.0174 0.5064 1.2292 0.1573 0.1212 0.4938

[0.7043] [0.7028] [0.7033] [6.9799] [6.7686] [6.7653]

125 -8.4783·10−5 0.0307 0.03184 0.5042 0.9592 0.1084 0.0868 0.5126

[0.5647] [0.5637] [0.5642] [5.5387] [5.4058] [5.4078]

150 -0.0478 -0.0223 -0.0216 0.5003 0.6655 -0.0386 -0.0544 0.4987

[0.4728 ] [0.4721] [0.4724] [4.5734] [4.4842] [4.4878]

200 -0.0499 -0.0309 -0.0303 0.5077 0.4768 -0.0482 -0.0570 0.4989

[0.3494] [0.3491] [0.3494] [3.4201] [3.3706] [3.3730]

*Percent bias of estimator, with percent MSE of estimator beneath in square brackets.
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6. Illustrative Application

The data for this application come from a list of bank failures from the United

States Federal Deposit Insurance Corporation. The data comprise the number of

banks that failed in each of the fifty states plus the District of Columbia in the

year 2008 (n = 51), out of a total of 25 bank failures in that year. Figure 1

shows empirical mass functions for the full sample and for the 20 states with the

lowest per capita GDP (n = 20). The sample means and variances are x̄ = 0.5

(0.4) and var(x) = 1.32 (1.31) for n = 51 (n = 20) respectively, typifying the

overdispersion that is readily modelled with a ZIP distribution. We have fitted ZIP

models to each sample, using MLE, and then applied the analytic bias adjustment

to the point estimates. The results appear in Table 4. These are presented for

two parameterizations of the model - once in terms of the paramters λ and γ, and

once in terms of the parameters λ and ω. Ninety-five percent confidence intervals

based on 999 bootstrap replications are reported in square brackets beneath the

coefficient estimates in that table.

Figure 1. Bank Failure Data

Although the changes arising from bias correction are not dramatic in Table 4,

the analytic corrections nevertheless improve the quality of our inferences for this

example. It should also be noted that the bootstrap proved unstable in the n = 20

case. Bootstrap samples with too many zeros resulted in large outliers, requiring

us to replace those problematic samples for the purposes of constructing sensible

confidence intervals. This of course, also has adverse implications for the use of the

bootstrap for bias correction itself, for this model with very small samples.

11



Table 4. Estimated ZIP Parameters for Bank Failure Data.

n = 51

λ̂ λ̃ γ̂ γ̃

(λ, γ): 1.7047 1.7202 0.9071 0.9236

[0.8139, 2.6773] [0.8040, 2.7105] [0.0844, 1.7171] [0.2019, 1.6896]

λ̂ λ̃ ω̂ ω̃

(λ, ω): 1.7047 1.7243 0.7124 0.7241

[0.8141, 2.6773] [0.5575, 2.7093] [0.5211, 0.8478] [0.5036, 0.8557]

n = 20

λ̂ λ̃ γ̂ γ̃

(λ, γ): 1.5935 1.6402 1.0931 1.1423

[0.9840, 3.3812] [1.1560, 3.2957] [-0.4966, 1.6852] [0.15268, 1.5819]

λ̂ λ̃ ω̂ ω̃

(λ, ω): 1.5937 1.6583 0.7490 0.7856

[0.9842, 3.3807] [0.7997, 3.6798] [0.3784, 0.8436] [0.3726, 0.8485]

7. Discussion and Conclusions

This paper shows that analytic-bias corrections to O(n−1) compare favourably

to parametric bootstrap corrections to the same order for the MLE for the zero-

inflated Poisson model, though our results also show that the MLE is very reliable

in small samples to begin with.

One benefit of the analytic approach is that the corrections can in principle

be extended to higher orders approximations. This means that with some effort,

the analytic approach may unambiguously dominate the standard parametric boot-

strap, especially in situations where the bootstrap is reliable only to O(n−1).

The analytic bias-reduction methods may also provide a useful alternative in ar-

eas in which the bootstrap fails. For example, Cordeiro and Klein (1994) show that

it is still applicable if the data are non-i.i.d., while MacKinnon (2002) argues that

the bootstrap may perform poorly in this context. Horowitz (2000) also cautions

against the use of bootstrap methods for dependent data and statistics that are not

asymptotically pivotal. As noted in the last section, the bootstrap can also fail for

other reasons when applied to the ZIP model with small samples.

We have compared a parametric bootstrap estimator to an analytic bias correc-

tion, but other resampling methods may also be worth exploring, such as the double

bootstrap and its less computationally intensive cousin, the fast double bootstrap

(FDB). The latter is described in Davidson and MacKinnon (2007), who argue that

the FDB may be useful in situations where the ordinary bootstrap performs well

but there exists room for further improvement.

Although we have found the MLEs for the parameters of the zero-inflated Poisson

model to be relatively unbiased, we have demonstrated that analytic methods can

be used to bias-correct these MLEs very successfully. Moreover, this bias reduction

does not come at the expense of increased MSE. Indeed, it can often result in a
12



lower MSE for the bias-reduced MLE. In the cases examined, the analytic bias-

corrected estimators are superior to the bootstrap-corrected estimators in terms of

Pitman’s nearness measure for the less-biased estimators, but they are not preferred

to the bootstrap on this basis when the estimators are more biased, on account of

a bias-variance tradeoff.

Our illustrative example demonstrates the ease and utility of applying these

methods to empirical data. These procedures may yield more dramatic improve-

ments if applied to other datasets that are also believed to follow a zero-inflated

Poisson process, though it should be noted again that based on the findings of this

paper, the MLE for the parameters of the ZIP model appears to be very reliable,

even in the context of relatively small samples.

Acknowledgement. We are grateful to Judith Clarke, Ryan Godwin, an Asso-

ciate Editor, and a referee for helpful comments on earlier versions of this work.
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Appendix

Analytic bias reduction for the ZIP model with parameters λ and ω. The

log-likelihood function for the model is given by:

l(λ, ω) =

n∑
i=1

I0log [ω + (1− ω)exp(−λ)]

+

n∑
i=1

(1− I0) [yilog(λ)− λ+ log(1− ω)− log(yi!)]

We require derivatives of the log-likelihood function up to the third order. Allowing

ω + (1− ω)exp(−λ) ≡ α,(1− ω)exp(−λ) ≡ β,(1− exp(−λ)) ≡ δ,

∂l

∂λ
=

n∑
i=1

{
−I0β

α
+ (1− I0)

yi − λ
λ

}
∂l

∂ω
=

n∑
i=1

{
I0δ

α
− (1− I0)

(1− ω)

}
∂2l

∂λ2
=

n∑
i=1

{
I0β

α
− I0β

2

α2
− (1− Io)

yi
λ2

}
∂2l

∂λ∂ω
=

n∑
i=1

{
I0β

α(1− ω)
+
I0βδ

α2

}
∂2l

∂ω2
=

n∑
i=1

{
−I0δ

2

α2
− (1− I0)

(1− ω)2

}
∂3l

∂λ3
=

n∑
i=1

{
−2I0β

3

α3
+

3I0β
2

α2
− I0β

α
+ 2(1− Io)

yi
λ3

}
∂3l

∂λ2∂ω
=

n∑
i=1

{
− I0β

α(1− ω)
− I0δβ

α2
+

2I0β
2

α2(1− ω)
+

2I0δβ
2

α3

}
∂3l

∂λ∂ω2
=

n∑
i=1

{
− 2I0δβ

α2(1− ω)
− 2I0δ

2β

α3

}
∂3l

∂ω3
=

n∑
i=1

{
2I0δ

3

α3
− 2(1− I0)

(1− ω)3

}
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Using the fact that E(y) = (1− ω)λ, and E(I0) = ω + (1− ω)e−λ ≡ α.

k11 = n

(
β − β2

α
− (1− ω)

λ

)
k12 = n

(
β

(1− ω)
+
βδ

α

)
= k21

k22 = n

(
−δ

2

α
+

(α− 1)

(1− ω)2

)
k111 = n

(
−2β3

α2
+

3β2

α
− β +

2(1− ω)

λ2

)
k112 = n

(
− β

(1− ω)
− δβ

α
+

2β2

α(1− ω)
+

2δβ2

α2

)
= k121 = k211

k122 = n

(
−2δ2β

α2
− 2δβ

α(1− ω)

)
= k212 = k221

k222 = n

(
2δ3

α2
+

2(α− 1)

(1− ω)3

)
k
(1)
11 = n

(
−β +

2β2

α
− β3

α2
+

(1− ω)

λ2

)
k
(2)
11 = n

(
2β2

α(1− ω)
− β

(1− ω)
+
β2δ

α2
+

1

λ

)
k
(1)
12 = n

(
β2

α(1− ω)
− β

(1− ω)
+
δβ2

α2
− δβ

α

)
k
(2)
12 = n

(
− βδ

α(1− ω)
− δ2β

α2

)
k
(1)
22 = n

(
− 2δβ

α(1− ω)
− δ2β

α2
− β

(1− ω)2

)
k
(2)
22 = n

(
δ3

α2
− 2(1− α)

(1− ω)3
+

δ

(1− ω)2

)
a
(1)
11 =

n

2

(
β2

α
− β

)
a
(1)
12 =

n

2

(
− β

(1− ω)
− δβ

α

)
= a

(1)
21

a
(1)
22 = n

(
− δβ

α(1− ω)
− β

(1− ω)2

)
a
(2)
11 = n

(
δβ

2α
− β

2(1− ω)
+

β

α(1− ω)
+

1

λ

)
a
(2)
12 = a

(2)
21 = 0

a
(2)
22 = − 2nβ

(1− ω)3
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A(1) = n

 1
2

(
β2

α − β
)

1
2

(
− β

(1−ω) −
δβ
α

)
1
2

(
− β

(1−ω) −
δβ
α

) (
− δβ
α(1−ω) −

β
(1−ω)2

) 
A(2) = n

 ( δβ2α − β
2(1−ω) + β

α(1−ω) + 1
λ

)
0

0 − 2β
(1−ω)3


Now we can write:

Bias

(
λ̂

ω̂

)
= K−1AV ec(K−1) +O(n−2).

The bias-adjusted estimators are given as :(
λ̃

ω̃

)
=

(
λ̂

ω̂

)
− K̂−1ÂV ec(K̂−1).
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