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1.   A very special dummy variable 
 � � �� � �  ;        n observations 

                                             � � �0
1� 

 


 ������ � � � ������ 1� ���� � 
 ������      ;    (n + 1) observations 

 

� � � � ������ 1�   ;    �� � ��� ������ 1 � 

 

 

��� � ���� � ��������� ��������� 1 � 
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Normal equations for OLS: 

��� ���� � �� 
 ������ 

or, 

   ���� � ��������� ��������� 1 � ���� � ���� � ������������� � 

 

���� � ���������� � ����� � ��� � ���������               (1) 

 

������ � � � ����                                    (2) 

 

From (2):        � � ����  ������            (3) 

Substitute in (1):      ���� � ��� 

As usual,                         �! � "#�#$%�#�� 
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Including “special” dummy variable is equivalent to dropping the observation. 

 

From (3):  �& � ����  ������! 

 

'��� � (����  ������!  1 �&* � 0 . 

Questions: 

• Does this happen with other estimators? 

• What if there are just 2 observations for which the dummy variable = 1? 

• Why would we want to include such a dummy variable? 

• What can we say about the standard error & t-statistic associated with �& ? 
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2. Other OLS results – Hendry & Santos (2005) 

• +,  and �& are BLUE. 

 

• +,  is weakly consistent for +. 

 

• The t-statistic for testing 
*

0 : jjH ββ = , for the j
th

 element of β , is still Student-t 

distributed under the null. 

 

• �& is an inconsistent estimator of �. 

 

• The usual estimator of the variance of �& is still unbiased and consistent. 

 

• The t-test statistic for testing *:0 γγ =H  is still Student-t distributed under the 

null. 

 

• The latter t-test is inconsistent. 
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  3. Extension to I.V. (this paper) 

                       vDXy ++= γβ  ; ],0[~ 2Iσν      

 

• At least some of the columns of X )( 1kn×  are random and correlated even 

asymptotically with the error term, v. That is 0)'( 1 ≠− νXnplim .  

 

• The columns of D )( 2kn ×  are zero-one indicator variables, each taking the 

value unity only for one (different) observation.  

 

• Without loss of generality, include the intercept and all of the columns of D in 

the set of instruments.  

 

• Let the columns of Z )( 1kn×  be the remaining 1k  instruments, satisfying 

0)'( 1 =− νZnplim  and ZXQXZnplim =− )'( 1
, where ZXQ  is finite and non-

singular. 
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For expository purposes, let 12 =k , so that D is a single column vector, d, with one non-

zero element at observation, bi , say.  

• Note that 1' =dd , 
bi

xdX ='  and 
bi

zdZ ='  where 
bi

x and 
bi

z  are )1( 1 ×k  vectors 

with elements comprising the values of the regressors in X and the instruments in 

Z, respectively, at observation bi .  

 

• So, '0)'( 1 =− Xdnplim .  

 

• Also, define ')'( 1
1 ZXZXIM −−=  and '')'( 1

2 ddIddddIM −=−= −
, so that 

01 =XM   and 02 =dM .  

 

• Note that   1]'01[]')')('[(1)'( 1111
1 =−=−= −−−−

biZX zQdZXZnXdnplimdMdplim . 
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Applying an I.V. version of the Frisch-Waugh-Lovell Theorem  (Giles, 1984) –  

 

yMZXMZ 2
1

2 ')'(
~ −=β      and    yMddMd 1

1
1 ')'(~ −=γ  

 

Theorem 1 

γ~  is an inconsistent estimator of γ . 

Proof 

  
.)(')'(

')'(~

1
1

1

1
1

1

νγβ
γ

++=

=
−

−

dXMddMd

yMddMd
 

Using the result, 01 =XM , we have: 

.')'(')'(')'(

')'(~

11
1

1
1

1
1

1

νν
νγγ

ZXZXddMdddMd

MddMd
−−−

−

−=

=−
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.')'(')'(')'(~ 11
1

1
1 ννγγ ZXZXddMdddMd −−− −=−  

By Slutsky’s Theorem,    

0)0'()]'()')('()'[( 11111
1 == −−−−−

ZXi QxZnXZnXddMdplim
b

ν   .   

Also, recalling that 1)'( 1 =dMdplim ,  

  
bb iiplimddMdplim ννν ==− )()]'()'[( 1

1  , 

where 
bi

ν is a single element of ν .     

So, using Slutsky’s Theorem again, 

  0)~( ≠=−
bi

plim νγγ   .           # 

[If the dummy variable takes the value unity for a fixed number of observations (the first 

m, say), and this number does not increase with n, then γ~  is still inconsistent.] 
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Theorem 2 

β~  is a consistent estimator of β . 

 

Theorem 3 

If )'( 1 νXnplim −
 is a finite vector; and XXQXXnplim =− )'( 1

 and  ZZQZZnplim =− )'( 1
 

are finite matrices. Then the asymptotic variance of )~(
bi

n νγγ −−  is 

)''( 112
bb iZXZZZXi xQQQx −−σ ; and this asymptotic variance can be estimated consistently by 

bb ii xZXZZXZxn 112 )'(')'('~ −−σ , where 

  ndXydXyn /)~~
()'~~

()/~'~(~2 γβγβννσ −−−−==  

is the usual consistent estimator of 
2σ . 

[This estimator of the covariance matrix is the usual one that we would construct.] 
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Theorem 4 

Let )( bi
Z  represent the Z matrix with the ib

th
 row deleted, and assume that 

**)()(
1 )'( ZZii QZZnplim

bb
=−

 is a finite matrix. Then the a.c.m. of )
~

( ββ −n  is 

)'( 1
**

12 −−
ZXZZZX QQQσ ; and this asymptotic variance can be estimated consistently by 

1
)()(

12 )'(')'('~ −− ZXZZXZxn
bbb iiiσ , where 

  ndXydXyn /)~~
()'~~

()/~'~(~2 γβγβννσ −−−−==  

is the usual consistent estimator of 
2σ . 

 

[This estimator of the covariance matrix is the usual one that we would construct.] 
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Theorem 5 

The usual t-test statistic for testing 
*

0 : jjH ββ = , for the j
th

 element of β , is 

asymptotically standard normally distributed if the null hypothesis is true.  

Theorem 6 

The usual t-test statistic for testing *:0 γγ =H  is asymptotically standard normally 

distributed if the null hypothesis is true.  

[This follows from the asymptotic normality of γ~  and the asymptotic independence of 

*)~( γγ −  and its estimated asymptotic variance, 
bb ii xZXZZXZxn 112 )'(')'('~ −−σ . So, 

asymptotically valid inferences may still be drawn about the coefficients of dummy 

variables that take only a fixed number of non-zero values. Same for Wald test.] 

Theorem 7 

The usual t-test for testing *:0 γγ =H  is inconsistent. 
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4.  Some simulation results 

        iiii zadaax ε+++= 210         (4)   

   

       iiii dxy νγβα +++=                 (5)   

  

   















2

212

12
2
1~

σσ
σσ

ν
ε

N
i

i
 ; i = 1, 2, ...., n. 

• Sample sizes up to n = 200,000 were considered.  

• Exogenous variable, z, generated as standard normal for the largest sample size, 

and held fixed for the 1,000 Monte Carlo repetitions. 

• Dummy variable, d: 1=id , i = 1, 2, ….. , 15; 0=id , i = 16, 17, .…. , n. 

12
2

2
1210 ======== σσγβαaaa ;  95.012 =σ .  

• Equation (5) was estimated by I.V. with d, z and the intercept as instruments.  



15 

 

 



16 

   



17 

 

 



18 

 

 

 

     Mean  S.D.  Jarque-Bera p-value 

n 

50    -0.053  0.979  0.020 

500    -0.027  0.980  0.821 

50,000   -0.008  1.007  0.806 
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Table 1: Powers of t-test of 0:0 =γH  vs. 0: ≠γAH  

(Size = 5%) 

γ 

 

-0.5  -0.3  -0.1  0.1  0.3  0.5 

n 

50   0.37  0.19  0.06  0.05  0.12  0.31 

500   0.49  0.21  0.07  0.06  0.20  0.46 

5,000  0.49  0.21  0.07  0.07  0.21  0.48 

100,000  0.49  0.22  0.07  0.07  0.22  0.49 

200,000  0.49  0.22  0.07  0.07  0.22  0.49 
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6.  Conclusions 

 

• Simple “impulse” dummy variables can give rise to unusual asymptotics. 

 

• The usual estimators of the coefficients of impulse dummies are inconsistent. 

 

• However, the usual confidence intervals and tests of restrictions will still be valid, 

asymptotically. 

 

• So, we can still test if outliers are “significant”. 

 

• But, these tests are “inconsistent” – so their power is limited even for large “n”. 

 

• Things get more complicated if we have a dynamic time-series model 

 

• Things also get more complicated if the X data are non-stationary and/or 

cointegrated. 


