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1. A very special dummy variable
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Normal equations for OLS:

or,
[X’X + xn+1x,n+1 Xn+1 (ﬁ) — (X,y + x’n+1yn+1)
x,n+1 1 y yn+1
X'XB + xXpi1X ni1f + Xp1V = X'y + X' 11Vn41 (1)
x’n+1ﬁ TV = Yn+1 (2)
From (2): VY = Yn+1 — x’n+1ﬁ (3)

Substitute in (1): X'XB=X'y

As usual, f=XX)"Xy



Including “special” dummy variable is equivalent to dropping the observation.

From (3): 7 =ype1 — X' i1l

Cn+1 = (yn+1 — x’n+1B -1 ?) =0.

Questions:

Does this happen with other estimators?

What if there are just 2 observations for which the dummy variable =17?

Why would we want to include such a dummy variable?

What can we say about the standard error & t-statistic associated with y ?



Other OLS results — Hendry & Santos (2005)

8 and 7 are BLUE.
B is weakly consistent for (.

The t-statistic for testing Hy : 5, = ,8;, for the j element of S, is still Student-t

distributed under the null.
y is an inconsistent estimator of y.

The usual estimator of the variance of 7 is still unbiased and consistent.

The t-test statistic for testing Hy : )y = y* is still Student-t distributed under the

null.

The latter t-test is inconsistent.



3. Extension to l.V. (this paper)

y=XB+Dy+v ; v~[0,0°]

At least some of the columns of X (nxk;) are random and correlated even

asymptotically with the error term, v. Thatis plim(n™X'v) 0.

e The columns of D (nXK,) are zero-one indicator variables, each taking the

value unity only for one (different) observation.

e Without loss of generality, include the intercept and all of the columns of D in
the set of instruments.

* Let the columns of Z (nxk;) be the remaining k; instruments, satisfying
plim(n™Z'v)=0 and plim(n™Z'X) =Q,y, where Q, is finite and non-

singular.



For expository purposes, let K, =1, so that D is a single column vector, d, with one non-

zero element at observation, i, say.

* Note that d'd =1, X'd=x_and Z'd =7 where X and z are (k Xx1) vectors

with elements comprising the values of the regressors in X and the instruments in
Z, respectively, at observation Ii,.

¢ So, plimnd'X)=0.

e Also, define M;=1-X(Z'X)?"Z' and M,=1-d(d'd)*d'=1-dd', so that
M;X =0 and M,d =0.

¢ Note that plim(d'M,d) =1~ plin{(n™d' X)(n"Z'X)™Z'd] = [1-0'Qx z ] =1.



Applying an I.V. version of the Frisch-Waugh-Lovell Theorem (Giles, 1984) —

B=(Z'M,X)Z'M,y and y=(d'M,d)d'M,y

Theorem 1
y is an inconsistent estimator of y.

Proof

}7:(d'l\/lld)_1d'l\/lly
=(d'M,d) ™ d'My (XB +dy +v)

Using the result, M; X =0, we have:

y-y=(d'Md) d'Mw
=(d'M,d)d'v-(d'Md)Hd' X(Z' X) 'z



y-y=(d'Md) d'v-(d'Md)*d X (Z'X)Z'Y
By Slutsky’s Theorem,
plimi(d'M,d) (d' X)(n"'Z' X) H(n?Z'v)] = (x;, Q£0) =0 .
Also, recalling that plim(d'M,d) =1,
plimi(dM,d)(d'v)] = plim(y, ) =v,_,
where V; is a single element of v .
So, using Slutsky’s Theorem again,
plin(y—y)zvibiO : #

[If the dummy variable takes the value unity for a fixed number of observations (the first

m, say), and this number does not increase with n, then ¥ is still inconsistent.]
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Theorem 2

,E is a consistent estimator of .

Theorem 3

If plimn™X'v) is a finite vector; and plim(n™X'X)=Qyy and plim(n™Z'Z) =Q,,
are finite matrices. Then the asymptotic variance of \/ﬁ(V—y—Vib) is

(szib'Qg(szQ'g( X, ); and this asymptotic variance can be estimated consistently by
NG*x '(Z'X)"Z'Z(X'Z)™x, , where

o> =7 In)=(y=XB-dp)(y-XB-dp)/n
is the usual consistent estimator of .

[This estimator of the covariance matrix is the usual one that we would construct.]
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Theorem 4

Let Z(ib) represent the Z matrix with the ibth row deleted, and assume that
p“m(n_lz(ib)'z(ib)):QZ*Z* is a finite matrix. Then the a.c.m. of \/ﬁ(ﬁ—ﬁ) is

(0°QxQ,.,-Q7x ); and this asymptotic variance can be estimated consistently by

NG*x '(Z'X)Z;\'Z ,(X'Z)™, where

g2 =('vin)=(y-XB-dp)(y-XB-dp)/n

is the usual consistent estimator of ~.

[This estimator of the covariance matrix is the usual one that we would construct.]
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Theorem 5

The usual t-test statistic for testing Hy:f; :,8;, for the /" element of S, is

asymptotically standard normally distributed if the null hypothesis is true.

Theorem 6

The usual t-test statistic for testing H, : )y =y* is asymptotically standard normally
oY=V

distributed if the null hypothesis is true.

[This follows from the asymptotic normality of y and the asymptotic independence of
(y —y*) and its estimated asymptotic variance, n&zxib'(Z'X)_lz'Z(X'Z)_lxib. So,
asymptotically valid inferences may still be drawn about the coefficients of dummy

variables that take only a fixed number of non-zero values. Same for Wald test.]

Theorem 7

The usual t-test for testing Hy : )y = y* is inconsistent.
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4. Some simulation results

Xi=g tad +az +¢ (4)

yi:C)f+lB)(i +ydi+vi (5)

£ o o :
~N| 2, i=1,2,...n.
I/i 0-12 0-2

e Sample sizes up to n = 200,000 were considered.

* Exogenous variable, z, generated as standard normal for the largest sample size,

and held fixed for the 1,000 Monte Carlo repetitions.

 Dummy variable, d: d =1, i = 1, 2, ... , 15; d: =0, i = 16, 17, ...
a,=ay=a,=a=pB=y=0{ =05 =1; gy, =095,

e Equation (5) was estimated by |.V. with d, z and the intercept as instruments.
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Figure 2: Sampling Distributions - Dummy Coefficient Estimator
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Figure 3:

Sampling Distributions - Dummy Coefficient t-Statistic
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50

500

50,000

Mean

-0.053

-0.027

-0.008

S.D.

0.979

0.980

1.007

Jarque-Bera p-value

0.020
0.821

0.806
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Table 1: Powers of t-testof Hy : y=0vs. H,: y#0

(Size = 5%)
V
-0.5 -0.3 -0.1 0.1 0.3 0.5
0.37 0.19 0.06 0.05 0.12 0.31
0.49 0.21 0.07 0.06 0.20 0.46
0.49 0.21 0.07 0.07 0.21 0.48
0.49 0.22 0.07 0.07 0.22 0.49
0.49 0.22 0.07 0.07 0.22 0.49
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6. Conclusions

Simple “impulse” dummy variables can give rise to unusual asymptotics.

e The usual estimators of the coefficients of impulse dummies are inconsistent.

e However, the usual confidence intervals and tests of restrictions will still be valid,
asymptotically.

e So, we can still test if outliers are “significant”.

e But, these tests are “inconsistent” — so their power is limited even for large “n”.

e Things get more complicated if we have a dynamic time-series model

 Things also get more complicated if the X data are non-stationary and/or
cointegrated.
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