On the Inconsistency of Instrumental Variables Estimators for the Coefficients of Certain Dummy Variables

David E. Giles

(Under revision, September, 2012)

web.uvic.ca/~dgiles/brown_bag/giles.pdf

THE PLAN

- 1. Some tricks with special dummy variables
- 2. Mention main results for OLS estimation
- 3. Extend results to I.V. estimation
- 4. Some simulation results
- 5. Conclusions

1. A very special dummy variable

$$\mathbf{y} = X\mathbf{\beta} + \mathbf{\varepsilon}$$
; n observations
 $\mathbf{d} = \begin{pmatrix} 0\\ \vdots\\ 1 \end{pmatrix}$

$$\begin{pmatrix} \mathbf{y} \\ y_{n+1} \end{pmatrix} = \begin{bmatrix} X & \mathbf{0} \\ \mathbf{x'}_{n+1} & 1 \end{bmatrix} \begin{pmatrix} \boldsymbol{\beta} \\ \gamma \end{pmatrix} + \begin{pmatrix} \boldsymbol{\varepsilon} \\ \varepsilon_{n+1} \end{pmatrix} \quad ; \quad (n+1) \text{ observations}$$

$$Q = \begin{bmatrix} X & \mathbf{0} \\ \mathbf{x'_{n+1}} & 1 \end{bmatrix} ; \quad Q' = \begin{bmatrix} X' & \mathbf{x_{n+1}} \\ \mathbf{0'} & 1 \end{bmatrix}$$

$$Q'Q = \begin{bmatrix} X'X + \mathbf{x_{n+1}}\mathbf{x'_{n+1}} & \mathbf{x_{n+1}} \\ \mathbf{x'_{n+1}} & 1 \end{bmatrix}$$

Normal equations for OLS:

$$Q'Q\begin{pmatrix}\boldsymbol{\beta}\\\boldsymbol{\gamma}\end{pmatrix} = Q'\begin{pmatrix}\boldsymbol{y}\\\boldsymbol{y}_{n+1}\end{pmatrix}$$

or,

$$\begin{bmatrix} X'X + \mathbf{x_{n+1}}\mathbf{x'_{n+1}} & \mathbf{x_{n+1}} \\ \mathbf{x'_{n+1}} & 1 \end{bmatrix} \begin{pmatrix} \boldsymbol{\beta} \\ \gamma \end{pmatrix} = \begin{pmatrix} X'\mathbf{y} + \mathbf{x'_{n+1}}y_{n+1} \\ y_{n+1} \end{pmatrix}$$

$$X'X\beta + x_{n+1}x'_{n+1}\beta + x_{n+1}\gamma = X'y + x'_{n+1}y_{n+1}$$
(1)

$$\boldsymbol{x'_{n+1}\boldsymbol{\beta}} + \boldsymbol{\gamma} = \boldsymbol{y_{n+1}} \tag{2}$$

From (2): $\gamma = y_{n+1} - x'_{n+1}\beta$ Substitute in (1): $X'X\beta = X'y$ As usual, $\widehat{\beta} = (X'X)^{-1}X'y$

(3)

Including "special" dummy variable is equivalent to dropping the observation.

From (3): $\hat{\gamma} = y_{n+1} - \mathbf{x'}_{n+1} \hat{\boldsymbol{\beta}}$

$$e_{n+1} = \left(y_{n+1} - \mathbf{x'}_{n+1}\widehat{\boldsymbol{\beta}} - 1\,\widehat{\boldsymbol{\gamma}}\right) = 0$$

Questions:

- Does this happen with other estimators?
- What if there are just 2 observations for which the dummy variable = 1?
- Why would we want to include such a dummy variable?
- What can we say about the standard error & t-statistic associated with $\hat{\gamma}$?

- 2. Other OLS results Hendry & Santos (2005)
 - $\hat{\beta}$ and $\hat{\gamma}$ are BLUE.
 - $\hat{\beta}$ is weakly consistent for β .
 - The t-statistic for testing $H_0: \beta_j = \beta_j^*$, for the j^{th} element of β , is still Student-t distributed under the null.
 - $\hat{\gamma}$ is an **inconsistent** estimator of γ .
 - The usual estimator of the variance of $\hat{\gamma}$ is still unbiased and consistent.
 - The t-test statistic for testing $H_0: \gamma = \gamma^*$ is still Student-t distributed under the null.
 - The latter t-test is **inconsistent**.

3. Extension to I.V. (this paper)

$$y = X\beta + D\gamma + v$$
 ; $v \sim [0, \sigma^2 I]$

- At least some of the columns of X $(n \times k_1)$ are random and correlated even asymptotically with the error term, v. That is $plim(n^{-1}X'v) \neq 0$.
- The columns of D ($n \times k_2$) are zero-one indicator variables, each taking the value unity only for one (different) observation.
- Without loss of generality, include the intercept and all of the columns of *D* in the set of instruments.
- Let the columns of Z $(n \times k_1)$ be the remaining k_1 instruments, satisfying $plim(n^{-1}Z'\nu) = 0$ and $plim(n^{-1}Z'X) = Q_{ZX}$, where Q_{ZX} is finite and non-singular.

For expository purposes, let $k_2 = 1$, so that *D* is a single column vector, *d*, with one nonzero element at observation, i_b , say.

- Note that d'd = 1, $X'd = x_{i_b}$ and $Z'd = z_{i_b}$ where x_{i_b} and z_{i_b} are $(k_1 \times 1)$ vectors with elements comprising the values of the regressors in X and the instruments in Z, respectively, at observation i_b .
- So, $plim(n^{-1}d'X) = 0'$.
- Also, define $M_1 = I X(Z'X)^{-1}Z'$ and $M_2 = I d(d'd)^{-1}d' = I dd'$, so that $M_1X = 0$ and $M_2d = 0$.
- Note that $plim(d'M_1d) = 1 plim[(n^{-1}d'X)(n^{-1}Z'X)^{-1}Z'd] = [1 0'Q_{ZX}^{-1}z_{i_h}] = 1.$

Applying an I.V. version of the Frisch-Waugh-Lovell Theorem (Giles, 1984) -

$$\widetilde{\beta} = (Z'M_2X)^{-1}Z'M_2y$$
 and $\widetilde{\gamma} = (d'M_1d)^{-1}d'M_1y$

Theorem 1

 $\tilde{\gamma}$ is an inconsistent estimator of γ .

Proof

 $\widetilde{\gamma} = (d'M_1d)^{-1}d'M_1y$ $= (d'M_1d)^{-1}d'M_1(X\beta + d\gamma + \nu) \quad .$

Using the result, $M_1 X = 0$, we have:

$$\widetilde{\gamma} - \gamma = (d'M_1d)^{-1}d'M_1v$$

= $(d'M_1d)^{-1}d'v - (d'M_1d)^{-1}d'X(Z'X)^{-1}Z'v$

•

$$\tilde{\gamma} - \gamma = (d'M_1d)^{-1}d'\nu - (d'M_1d)^{-1}d'X(Z'X)^{-1}Z'\nu$$
.

By Slutsky's Theorem,

$$plim[(d'M_1d)^{-1}(d'X)(n^{-1}Z'X)^{-1}(n^{-1}Z'\nu)] = (x'_{i_b}Q_{ZX}^{-1}0) = 0 .$$

Also, recalling that $plim(d'M_1d) = 1$,

$$plim[(d'M_1d)^{-1}(d'v)] = plim(v_{i_b}) = v_{i_b}$$
,

where V_{i_b} is a single element of v .

So, using Slutsky's Theorem again,

$$plim(\tilde{\gamma} - \gamma) = v_{i_b} \neq 0$$
. #

[If the dummy variable takes the value unity for a *fixed* number of observations (the first *m*, say), and this number does not increase with *n*, then $\tilde{\gamma}$ is still inconsistent.]

Theorem 2

 $\tilde{\beta}$ is a consistent estimator of β .

Theorem 3

If $plim(n^{-1}X'v)$ is a finite vector; and $plim(n^{-1}X'X) = Q_{XX}$ and $plim(n^{-1}Z'Z) = Q_{ZZ}$ are finite matrices. Then the asymptotic variance of $\sqrt{n}(\tilde{\gamma} - \gamma - v_{i_b})$ is $(\sigma^2 x_{i_b}'Q_{ZX}^{-1}Q_{ZZ}Q'_{ZX}^{-1}x_{i_b})$; and this asymptotic variance can be estimated consistently by $n\tilde{\sigma}^2 x_{i_b}'(Z'X)^{-1}Z'Z(X'Z)^{-1}x_{i_b}$, where

$$\widetilde{\sigma}^2 = (\widetilde{\nu}'\widetilde{\nu}/n) = (y - X\widetilde{\beta} - d\widetilde{\gamma})'(y - X\widetilde{\beta} - d\widetilde{\gamma})/n$$

is the usual consistent estimator of σ^2 .

[This estimator of the covariance matrix is the usual one that we would construct.]

Theorem 4

Let $Z_{(i_b)}$ represent the Z matrix with the i_b^{th} row deleted, and assume that $plim(n^{-1}Z_{(i_b)}'Z_{(i_b)}) = Q_{Z^*Z^*}$ is a finite matrix. Then the a.c.m. of $\sqrt{n}(\widetilde{\beta} - \beta)$ is $(\sigma^2 Q_{ZX}^{-1} Q_{Z^*Z^*} Q_{ZX}')$; and this asymptotic variance can be estimated consistently by $n\widetilde{\sigma}^2 x_{i_b}'(Z'X)^{-1}Z_{(i_b)}'Z_{(i_b)}(X'Z)^{-1}$, where

$$\widetilde{\sigma}^2 = (\widetilde{\nu}'\widetilde{\nu}/n) = (y - X\widetilde{\beta} - d\widetilde{\gamma})'(y - X\widetilde{\beta} - d\widetilde{\gamma})/n$$

is the usual consistent estimator of σ^2 .

[This estimator of the covariance matrix is the usual one that we would construct.]

Theorem 5

The usual t-test statistic for testing $H_0: \beta_j = \beta_j^*$, for the j^{th} element of β , is asymptotically standard normally distributed if the null hypothesis is true.

Theorem 6

The usual t-test statistic for testing $H_0: \gamma = \gamma^*$ is asymptotically standard normally distributed if the null hypothesis is true.

[This follows from the asymptotic normality of $\tilde{\gamma}$ and the asymptotic independence of $(\tilde{\gamma} - \gamma^*)$ and its estimated asymptotic variance, $n\tilde{\sigma}^2 x_{i_b}'(Z'X)^{-1}Z'Z(X'Z)^{-1}x_{i_b}$. So, asymptotically valid inferences may still be drawn about the coefficients of dummy variables that take only a **fixed** number of non-zero values. Same for Wald test.]

Theorem 7

The usual t-test for testing $H_0: \gamma = \gamma^*$ is inconsistent.

4. Some simulation results

$$x_i = a_0 + a_1 d_i + a_2 z_i + \varepsilon_i \tag{4}$$

$$y_i = \alpha + \beta x_i + \gamma d_i + \nu_i \tag{5}$$

$$\begin{pmatrix} \boldsymbol{\varepsilon}_i \\ \boldsymbol{v}_i \end{pmatrix} \sim N \begin{bmatrix} \boldsymbol{\sigma}_1^2 & \boldsymbol{\sigma}_{12} \\ \boldsymbol{\sigma}_{12} & \boldsymbol{\sigma}_2^2 \end{bmatrix}; \quad i = 1, 2, ..., n.$$

- Sample sizes up to *n* = 200,000 were considered.
- Exogenous variable, *z*, generated as standard normal for the largest sample size, and held fixed for the 1,000 Monte Carlo repetitions.
- Dummy variable, d: $d_i = 1$, i = 1, 2, ..., 15; $d_i = 0$, i = 16, 17, ..., n. $a_0 = a_1 = a_2 = \alpha = \beta = \gamma = \sigma_1^2 = \sigma_2^2 = 1$; $\sigma_{12} = 0.95$.
- Equation (5) was estimated by I.V. with *d*, *z* and the intercept as instruments.

Figure 1: Sampling Distributions - X Coefficient Estimator

Point Estimate

Figure 3: Sampling Distributions - Dummy Coefficient t-Statistic

t_Value

	Mean	S.D.	Jarque-Bera p-value		
n					
50	-0.053	0.979	0.020		
500	-0.027	0.980	0.821		
50,000	-0.008	1.007	0.806		

Table 1: Powers of t-test of $H_0: \gamma = 0$ vs. $H_A: \gamma \neq 0$

				γ		
	-0.5	-0.3	-0.1	0.1	0.3	0.5
n						
50	0.37	0.19	0.06	0.05	0.12	0.31
500	0.49	0.21	0.07	0.06	0.20	0.46
5,000	0.49	0.21	0.07	0.07	0.21	0.48
100,000	0.49	0.22	0.07	0.07	0.22	0.49
200,000	0.49	0.22	0.07	0.07	0.22	0.49

(Size = 5%)

6. Conclusions

- Simple "impulse" dummy variables can give rise to unusual asymptotics.
- The usual estimators of the coefficients of impulse dummies are inconsistent.
- However, the usual confidence intervals and tests of restrictions will still be valid, asymptotically.
- So, we can still test if outliers are "significant".
- But, these tests are "inconsistent" so their power is limited even for large "n".
- Things get more complicated if we have a dynamic time-series model
- Things also get more complicated if the X data are non-stationary and/or cointegrated.