Department of Economics

University of Victoria

ECON 545: Econometric Analysis Term Test, October 2014

Instructor: David Giles

Instructions: Answer **ALL QUESTIONS**, and put all answers in the booklet provided

Time Allowed: 120 minutes (Total marks = 120 - i.e., one mark per minute)

Number of Pages: FIVE

PART A:

Select the **most appropriate** answer in each case. Each question is worth **3 marks**. (No explanation is need for full marks, but it will be taken into account if given.)

Question 1:

If we use Ordinary Least Squares to estimate the regression model, $y = X\beta + \varepsilon$, where **all** of the usual assumptions are satisfied, and the model includes an intercept then:

- (a) The average value of the OLS residuals will be zero.
- (b) The average of the OLS fitted values will equal the sample average of the *y* values.
- (c) The regressors will be uncorrelated with the residuals in the sample.
- (d) All of the above.

Question 2:

The coefficient of determination (R^2) for the usual least squares regression model:

- (a) Always lies between zero and one in value.
- (b) Cannot increase when we add one or more regressors to the model.
- (c) Cannot be greater than the "adjusted" R^2 .
- (d) Can be negative if there is no intercept in the model.

Question 3:

For a linear multiple regression model, satisfying all of the usual assumptions, estimated by OLS:

- (a) The error vector has a scalar covariance matrix, but the residual vector does not.
- (b) The covariance matrix for the error vector is non-singular, but the covariance matrix for the residual vector is singular.
- (c) Apart from a scale factor, the covariance matrices of the error vector and of the least squares residual vector are both idempotent.
- (d) All of the above.

Question 4:

The "power" of any statistical test:

- (a) Is just one minus the probability of a "Type I" error.
- (b) Is equal to the significance level chosen for the test, when the null hypothesis is true.
- (c) Always increases as the sample size grows, because more information is being used.
- (d) Can never be smaller than the chosen significance level.

Ouestion 5:

When we construct a confidence interval for one of the coefficients in a regression model:

- (a) This interval will be shorter if the sample size is reduced, other things being equal.
- (b) This interval will be wider if the confidence level is reduced, other things being equal.
- (c) This interval will be wider if it constructed asymmetrically about b_i , than if it symmetric.
- (d) None of the above.

Ouestion 6:

The Gauss-Markov Theorem tells us that, under appropriate assumptions, the least squares estimator of β in the usual linear regression model:

- (a) Is a linear estimator, and therefore is "best".
- (b) Has the smallest bias among all possible linear estimators for this parameter vector.
- (c) Is most efficient among all possible linear and unbiased estimators of this parameter.
- (d) Is most efficient among all possible unbiased estimators that have a Normal sampling distribution.

Question 7:

The Instrumental Variables (I.V.) estimator for the coefficient vector in a linear regression model is designed to be:

- (a) "Best linear unbiased" if the regressors are correlated with the errors.
- (b) At least weakly consistent, if the regressors are correlated with the errors.
- (c) Asymptotically efficient, relative the OLS estimator, whether the regressors are correlated with the errors or not.
- (d) Mean square consistent when the instruments are highly correlated with the errors.

Total: 21 marks

PART B:

State whether each of the following is TRUE or FALSE, and BRIEFLY explain your answer. Each question is worth 4 marks. Of these, 3 marks are given for the explanation.

Question 8:

- (a) If we apply a Hausman test of the hypothesis that the errors in a regression model are asymptotically uncorrelated with the regressors, we would use I.V. estimation if the p-value for the test is large enough (say, greater than 10% or 20%).
- Suppose that all of the usual assumptions for our regression model hold, except that the errors are heteroskedastic. Let b_i denote the usual OLS estimator of β_i , the i^{th} element of β . Then $[b_1 \ b_2]$ is an unbiased and weakly consistent estimator of $[\beta_1 \ \beta_2]$.
- (c) The Wald test is more useful than is the usual F-test that we use for testing exact linear restrictions on the regression coefficient vector, β .
- (d) Suppose that one of the regressors in a k-regressor multiple linear OLS regression model is a variable that takes the value "1" for just the first three observations, but is zero for all other observations. Then, $e_1 = -(e_2 + e_3)$, where the e_i 's are the OLS residuals.
- (e) If we fit a linear regression model using Instrumental Variables estimation, with an equal number of regressors and instruments, the residuals will sum to zero as long as the instrument matrix includes a column of 'ones'.
- (f) One connection between the variance of an estimator and the mean squared error of that estimator is that the mean squared error cannot be less than the variance.

Total: 24 marks

PART C: Answer all 3 questions in this section.

Question 9:

The following EViews results relate to a model that explains the net worth of a cross-section of U.S. individuals in 1989, measured in thousands of dollars. The regressors are:

EDUC = years of education

MARRIED = dummy variable (= 1 if married; = 0 if not)

PYEARS = number of years in a pension plan

AGE = age, in years

AFRAM = dummy variable (=1 if African American; = 0 if not)

PCTSTCK = % of pension plan held in stocks

FINC101 = dummy variable (= 1 if family income > \$100,000 p.a.; = 0, otherwise)

Dependent Variable: NET_WORTH

Method: Least Squares Date: 10/22/14 Time: 10:05

Sample: 1 226

Included observations: 205

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-679.1467	259.2987	-2.619167	0.0095
EDUC	17.47498	6.184717	2.825511	0.0052
MARRIED	99.17807			0.0095
PYEARS	-3.350712	1.675122	-2.000280	0.0468
AGE	10.39204	3.982739	2.609270	0.0098
AFRAM	-96.92262	51.90103	-1.867451	0.0633
PCTSTCK	-0.198055	0.398787	-0.496644	0.6200
FINC101	180.2197	70.46655	2.557521	0.0113
R-squared		Mean dependent var		210.8534
Adjusted R-squared	0.158546	S.D. dependent var		242.1072
S.E. of regression	222.0869	Akaike info criterion		13.68226
Sum squared resid	9716547.	Schwarz criterion		13.81194
Log likelihood	-1394.431	Hannan-Quinn criter.		13.73471
F-statistic	6.491077	Durbin-Watson stat		1.952117
Prob(F-statistic)	0.000001			

(a) *Briefly* discuss the signs and significance of the regressors. Are there any surprises? What do you conclude from the "F-statistic" in the above results?

(9 marks)

(b) Calculate the value for the "missing" R^2 , and explain what this value tells us.

(6 marks)

(c) Construct a 95% confidence interval for the coefficient of AGE, and carefully interpret its meaning.

(6 marks)

(d) Test the hypothesis that the coefficient of EDUC equals 10, using a 2-sided alternative hypothesis, and a 5% significance level.

(6 marks)

(e) Use the information below to compute the standard error for the estimated coefficient of the MARRIED regressor.

(3 marks)

Coefficient Covariance Matrix С **EDUC** MARRIED **PYEARS** AGE **AFRAM PCTSTCK** FINC101 67235.83 -613.4542 378.6997 91.61959 -967.7661 -2188.994 -23.21021 -515.3223 -613.4542 38.25072 -4.959195 -0.692818 1.899751 -0.258175 -0.066537 -67.34109 378.6997 -4.959195 1435.012 -7.638729 -21.52264 518.7295 -0.757774 -80.66601 91.61959 -0.692818 -7.638729 2.806033 -1.781839 -7.284819 -0.008129 1.544245 -967.7661 1.899751 -21.52264 -1.781839 15.86221 25.86974 0.279502 16.78817 -2188.994 -0.258175 518.7295 -7.284819 25.86974 2693.717 0.130063 293.9980 -0.066537 -0.757774 -0.008129 0.279502 -23.21021 0.130063 0.159031 3.124250 -515.3223 -67.34109 -80.66601 1.544245 16.78817 293.9980 3.124250 4965.534

Total: 30 marks

Question 10:

Consider the linear multiple regression model, $y = X\beta + \varepsilon$, where all of the usual assumptions are satisfied, *except* that the regressors are random and correlated with the errors (even asymptotically). That is, $p \lim_{n \to \infty} (n^{-1}X'\varepsilon) = \gamma \neq 0$, and γ is finite. We have available a set of k instrumental variables which are form the columns of the $(n \times k)$ matrix Z. The X and Z matrices satisfy the following conditions:

- (i) $p \lim (n^{-1}X'X) = Q_{XX}$; positive-definite & finite.
- (ii) $p \lim_{n \to \infty} (n^{-1}Z'Z) = Q_{ZZ}$; positive-definite & finite.
- (iii) $p \lim (n^{-1}Z'X) = Q_{ZX}$; positive-definite & finite.
- (iv) $p \lim (n^{-1}Z'\varepsilon) = 0$.

In this case the I.V. estimator for β is $b_{IV} = (Z'X)^{-1}Z'y$.

(a) Show that the I.V. residual vector is $e_{IV} = W\varepsilon$, where $W = [I - X(Z'X)^{-1}Z']$.

4 marks

(b) Show that the sum of the squares of these I.V. residuals can be written as:

$$\varepsilon'\varepsilon-\varepsilon'X(Z'X)^{^{-1}}Z'\varepsilon-\varepsilon'Z(X'Z)^{^{-1}}X'\varepsilon+\varepsilon'Z(X'Z)^{^{-1}}X'X(Z'X)^{^{-1}}Z'\varepsilon\,.$$

6 marks

Using assumptions (i) – (iv) and Khintchine's Theorem, **prove** that $s_{IV}^2 = (e_{IV} e_{IV})/n$ is a weakly consistent estimator of σ^2 (the variance of the error term in the model).

[<u>Hint</u>: the proof follows the same lines as the proof of the weak consistency of s^2 for the OLS case.]

14 marks

Total: 24 marks

Question 11:

(a) Suppose that we have the following regression model, which satisfies *all* of the usual assumptions:

$$y = X_1 \beta_1 + X_2 \beta_2 + \varepsilon \,, \tag{1}$$

and suppose that (from some other source) we have an unbiased estimator, say $\hat{\beta}_1$, for the β_1 vector. We can get an estimator of β_2 by regressing $(y - X_1 \hat{\beta}_1)$ on X_2 , using OLS. *Prove* that this will yield an *unbiased* estimator of β_2 .

(7 marks)

(b) Suppose that we estimate the following regression model, which satisfies *all* of the usual assumptions, by OLS:

$$y = X\beta + \varepsilon . (2)$$

Let the residual vector be denoted e.

We then estimate the following model by OLS:

$$y = X\beta + \alpha e + u . (3)$$

Prove that the estimated value for the β vector from (3) will be the same as would be obtained in equation (2).

[<u>Hint</u>: If we apply OLS estimation to (1), then $b_1 = [X_1'M_2X_1]^{-1}X_1'M_2y$,

where
$$M_2 = I - X_2(X_2'X_2)^{-1}X_2'$$
.

(6 marks)

(c) Using the result that $y = \hat{y} + e$, show that e'y = e'e.

(3 marks)

(d) Using the same approach as in part (b) above, *prove* that the value of the OLS estimator of α in equation (3) is one.

(5 marks)

Total: 21 marks

END OF TEST