Question 1:

Write brief notes (and/or diagrams) to explain what we mean by each of the following:

(a) The Lindeberg-Lévy Central Limit Theorem.

(b) A Mini-Max estimator.

(c) An Asymptotically Efficient estimator.

Total: 18 Marks

Question 2:

A Pearson Type III distribution has three parameters. When one of these parameters is set to 0.5, the density function for a random variable, \(Y\), that follows this distribution is:

\[
p(y) = \frac{1}{\beta \sqrt{\pi}} \left(\frac{y - \alpha}{\beta} \right)^{-1/2} \exp \left\{ -\frac{(y - \alpha)}{\beta} \right\} ; \quad y > \alpha
\]

and the associated characteristic function can be shown to be:

\[
\phi_y(t) = \exp \{i\alpha t\} \left(1 - i\beta t \right)^{-1/2}.
\]

(a) Suppose we construct a new random variable, \(X = Y_1 + Y_2\), where \(Y_1\) and \(Y_2\) are independent. What is the characteristic function for \(X\)?

3 marks

(b) Use this characteristic function to prove that \(E(X) = 2\alpha + \beta\).

8 marks

(c) Now, suppose that we know that \(\alpha = 0\). If we have \(n\) independent sample values, show that the MLE of \(\beta\) is \(\tilde{\beta} = 2\bar{Y} = \frac{2}{n} \sum_{i=1}^{n} y_i\). (Don’t forget the second-order condition.)

8 marks

(d) What is the MLE for \(E(X)\) in part (b), under the conditions stated in part (c)?

1 mark

Total: 20 Marks
Question 3:

The density for a random variable, \(Y \), that follows a Rayleigh distribution is:

\[
p(y \mid \theta) = \frac{(y / \theta^2)}{\exp \{-y^2 / (2\theta^2)\}} ; \quad y > 0 ; \quad \theta > 0 .
\]

and the \(k \)th moment about the origin is \(\mu_k = \theta^k 2^{k/2} \Gamma \left[1 + \frac{k}{2} \right] \). Here, the Gamma function satisfies the recurrence relationship, \(\Gamma(x + 1) = x\Gamma(x) \); \(\Gamma(1) = 1 \) and \(\Gamma(1/2) = \sqrt{\pi} \).

(a) If we have \(n \) independent sample values, show that the MLE of \(\theta \) is \(\hat{\theta} = \sqrt{(1/2n) \sum y_i^2} \).

(b) Show that the mean of \(Y \) is \(\theta\sqrt{\pi / 2} \) and the variance of \(Y \) is \(\theta^2 \left(4 - \pi \right) / 2 \). What are the MLE’s for the mean, variance and standard deviation of \(Y \), and what desirable properties will these estimator have?

(c) Derive the Likelihood Ratio Test statistic for testing \(H_0: \theta = 1 \) against \(H_1: \theta \neq 1 \).

(d) Suppose that \(n = 100 \) and \(\sum_{i=1}^{n} y_i^2 = 180 \). Apply the LRT. What assumptions have you made? Is your conclusion sensitive to your choice of significance level?

Question 4:

This question relates to the estimation of a particular “Tobit” model, which explains hours worked in terms of several explanatory variables. The data for the dependent variable are truncated from below – we don’t observe the characteristics of people who work zero hours. In addition, the underlying distribution is non-Normal.

(a) What does OUTPUT suggest about the success (or otherwise) of this estimation?

(b) What do you conclude from OUTPUT 2?

(c) Use the results in OUTPUT 1 and OUTPUT 3 to test the same hypothesis as in OUTPUT 2, but using a different test.

(d) What do you conclude from OUTPUT 4?

Total: 24 Marks

Total: 13 Marks
OUTPUT 1

Dependent Variable: HOURS
Method: ML - Censored Extreme Value (Newton-Raphson / Marquardt steps)
Date: 02/17/16 Time: 13:45
Sample: 1753
Included observations: 753
Left censoring (value) at zero
Convergence achieved after 8 iterations
Coefficient covariance computed using the Huber-White method

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1719.574</td>
<td>486.2058</td>
<td>3.536720</td>
<td>0.0004</td>
</tr>
<tr>
<td>FAMINC</td>
<td>0.206550</td>
<td>0.021072</td>
<td>9.802242</td>
<td>0.0000</td>
</tr>
<tr>
<td>NWIFEINC</td>
<td>-213.6402</td>
<td>21.96998</td>
<td>-9.724189</td>
<td>0.0000</td>
</tr>
<tr>
<td>EDUC</td>
<td>-24.5296</td>
<td>21.26279</td>
<td>-1.153327</td>
<td>0.2488</td>
</tr>
<tr>
<td>EXPER</td>
<td>57.41200</td>
<td>32.19129</td>
<td>1.783464</td>
<td>0.0745</td>
</tr>
<tr>
<td>EXPERSQ</td>
<td>-0.781939</td>
<td>0.809279</td>
<td>-0.966216</td>
<td>0.3339</td>
</tr>
<tr>
<td>AGE</td>
<td>-37.14717</td>
<td>12.04116</td>
<td>-3.085017</td>
<td>0.0020</td>
</tr>
<tr>
<td>KIDS1T6</td>
<td>-534.3157</td>
<td>150.6138</td>
<td>-3.550907</td>
<td>0.0004</td>
</tr>
<tr>
<td>KIDSGE6</td>
<td>1.395108</td>
<td>42.76065</td>
<td>0.032649</td>
<td>0.9740</td>
</tr>
</tbody>
</table>

Error Distribution

| SCALE:C(10) | 1112.469 | 103.8358 | 10.71373 | 0.0000 |

Mean dependent var 740.5764 S.D. dependent var 871.3142
S.E. of regression 577.0212 Akaike info criterion 9.899979
Sum squared resid 2.47E+08 Schwarz criterion 9.961388
Log likelihood -371.7342 Hannan-Quinn criter. 9.932637
Avg. log likelihood -4.935709

Left censored obs 325 Right censored obs 0
Uncensored obs 428 Total obs 753

OUTPUT 2

Wald Test:
Equation: TOBIT

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>Value</th>
<th>df</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-statistic</td>
<td>0.729663</td>
<td>(3, 743)</td>
<td></td>
</tr>
<tr>
<td>Chi-square</td>
<td>2.188988</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Null Hypothesis: C(4)=C(6)=C(9)=0
OUTPUT 3

Dependent Variable: HOURS
Method: ML - Censored Extreme Value (Newton-Raphson / Marquardt steps)
Date: 02/17/16 Time: 13:36
Sample: 1753
Included observations: 753
Left censoring (value) at zero
Convergence achieved after 9 iterations
Coefficient covariance computed using the Huber-White method

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1636.036</td>
<td>531.8561</td>
<td>3.077216</td>
<td>0.0021</td>
</tr>
<tr>
<td>FAMINC</td>
<td>0.205555</td>
<td>0.021262</td>
<td>9.867904</td>
<td>0.0000</td>
</tr>
<tr>
<td>NWIFEINC</td>
<td>-213.8543</td>
<td>22.38386</td>
<td>-9.545016</td>
<td>0.0000</td>
</tr>
<tr>
<td>EXPER</td>
<td>35.44226</td>
<td>13.79912</td>
<td>2.568443</td>
<td>0.0102</td>
</tr>
<tr>
<td>AGE</td>
<td>-36.2781</td>
<td>13.94171</td>
<td>-2.617287</td>
<td>0.0084</td>
</tr>
<tr>
<td>KIDSLT6</td>
<td>-562.0674</td>
<td>156.2687</td>
<td>-3.586928</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Error Distribution

<table>
<thead>
<tr>
<th>SCALE C(7)</th>
<th>1113.790</th>
<th>104.0929</th>
<th>10.69996</th>
<th>0.0000</th>
</tr>
</thead>
</table>

- Mean dependent var: 740.5764
- S.D. dependent var: 871.3142
- S.E. of regression: 565.3175
- Akaiki info criterion: 9.896655
- Sum squared resid: 2.58E+08
- Schwarz criterion: 9.939641
- Log likelihood: -3719.091
- Hannan-Quinn criterion: 9.913216
- Avg. log likelihood: -4.933032

Left censored obs: 325
Right censored obs: 0
Uncensored obs: 428
Total obs: 753

OUTPUT 4

Gradients of the Objective Function
Gradients evaluated at estimated parameters
Equation: TOBIT
Method: ML - Censored Extreme Value
Specification: HOURS C FAMINC NWIFEINC EXPER AGE KIDSLT6

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sum</th>
<th>Mean</th>
<th>Weighted Grad</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>1.47E-16</td>
<td>1.95E-19</td>
<td>4.55E-10</td>
</tr>
<tr>
<td>FAMINC</td>
<td>4.74E-12</td>
<td>6.29E-15</td>
<td>-1.74E-17</td>
</tr>
<tr>
<td>NWIFEINC</td>
<td>8.91E-15</td>
<td>1.14E-17</td>
<td>1.00E-12</td>
</tr>
<tr>
<td>EXPER</td>
<td>1.15E-15</td>
<td>1.53E-19</td>
<td>-1.06E-12</td>
</tr>
<tr>
<td>AGE</td>
<td>1.03E-14</td>
<td>1.37E-17</td>
<td>2.73E-13</td>
</tr>
<tr>
<td>KIDSLT6</td>
<td>5.24E-17</td>
<td>6.95E-20</td>
<td>-4.50E-10</td>
</tr>
<tr>
<td>SCALE: C(7)</td>
<td>3.13E-16</td>
<td>4.16E-19</td>
<td>1.05E-10</td>
</tr>
</tbody>
</table>

END OF TEST