Department of Economics

University of Victoria

ECON 546: Themes in Econometrics Term Test, February 2016

Instructor: Instructions:	David Giles Answer ALL OUESTIONS & put all answers in the booklet provided
Time Allowed:	75 minutes (Total marks = $75 - i.e.$, one mark per minute.)
Number of Pages:	FOUR (A separate set of statistical tables & a formula sheet are also provided.)

Question 1:

Write brief notes (and/or diagrams) to explain what we mean by each of the following:

- (a) The Lindeberg-Lévy Central Limit Theorem.
- (b) A Mini-Max estimator.
- (c) An Asymptotically Efficient estimator.

Total: 18 Marks

Question 2:

A Pearson Type III distribution has three parameters. When one of these parameters is set to 0.5, the density function for a random variable, Y, that follows this distribution is:

$$p(y) = \frac{1}{\beta \sqrt{\pi}} \left(\frac{y - \alpha}{\beta} \right)^{-1/2} \exp\{-(y - \alpha)/\beta\} \quad ; \quad y > \alpha$$

and the associated characteristic function can be shown to be:

$$\phi_{v}(t) = \exp\{i\alpha t\}(1-i\beta t)^{-1/2}$$
.

(a) Suppose we construct a new random variable, $X = Y_1 + Y_2$, where Y_1 and Y_2 are independent. What is the characteristic function for *X*?

3 marks

(b) Use this characteristic function to prove that $E(X) = 2\alpha + \beta$.

8 marks

(c) Now, suppose that we know that $\alpha = 0$. If we have *n* independent sample values, show that the MLE of β is $\tilde{\beta} = 2\bar{y} = \frac{2}{n} \sum_{i=1}^{n} y_i$. (Don't forget the second-order condition.)

8 marks

(d) What is the MLE for E(X) in part (b), under the conditions stated in part (c)?

1 mark Total: 20 Marks

Question 3:

The density for a random variable, *Y*, that follows a Rayleigh distribution is:

$$p(y | \theta) = (y / \theta^2) \exp\{-y^2 / (2\theta^2)\}$$
; $y > 0; \theta > 0.$

and the k^{th} moment about the origin is $\mu_k = \theta^k 2^{k/2} \Gamma[1 + (k/2)]$. Here, the Gamma function satisfies the recurrence relationship, $\Gamma(x+1) = x\Gamma(x)$; $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$.

- (a) If we have *n* independent sample values, show that the MLE of $\boldsymbol{\theta}$ is $\tilde{\boldsymbol{\theta}} = \sqrt[4]{(1/2n)\sum_{i} y_{i}^{2}}$. **7 marks**
- (b) Show that the mean of *Y* is $\theta \sqrt{\pi/2}$ and the variance of *Y* is $\theta^2 (4-\pi)/2$. What are the MLE's for the mean, variance *and standard deviation* of *Y*, and what desirable properties will these estimator have?
- (c) Derive the Likelihood Ratio Test statistic for testing H₀: $\theta = 1$ against H₁: $\theta \neq 1$. 5 marks
- (d) Suppose that n = 100 and $\sum_{i=1}^{n} y_i^2 = 180$. Apply the LRT. What assumptions have you made? Is your conclusion sensitive to your choice of significance level?

5 marks <u>Total: 24 Marks</u>

4 marks

Question 4:

This question relates to the estimation of a particular "Tobit" model, which explains hours worked in terms of several explanatory variables. The data for the dependent variable are truncated from below – we don't observe the characteristics of people who work zero hours. In addition, the underlying distribution is non-Normal.

- (a) What does **OUTPUT** suggest about the success (or otherwise) of this estimation?
- (b) What do you conclude from OUTPUT 2?
 3 marks
 (c) Use the results in OUTPUT 1 and OUTPUT 3 to test the same hypothesis as in OUTPUT 2, but using a different test.
 4 marks
 (d) What do you conclude from OUTPUT 4?
 2 marks
 Total: 13 Marks

OUTPUT 1

Dependent Variable: HOURS Method: ML - Censored Extreme Value (Newton-Raphson / Marquardt steps) Date: 02/17/16 Time: 13:45 Sample: 1 753 Included observations: 753 Left censoring (value) at zero Convergence achieved after 8 iterations Coefficient covariance computed using the Huber-White method

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C FAMINC NWIFEINC EDUC EXPER EXPERSO	1719.574 0.206550 -213.6402 -24.52296 57.41200 -0 781939	486.2058 0.021072 21.96998 21.26279 32.19129 0 809279	3.536720 9.802242 -9.724189 -1.153327 1.783464 -0.966216	0.0004 0.0000 0.2488 0.0745 0.3339
AGE KIDSLT6 KIDSGE6	-0.781939 -37.14717 -534.8157 1.396108	12.04116 150.6138 42.76065	-0.966216 -3.085017 -3.550907 0.032649	0.0020 0.0004 0.9740

Error Distribution

SCALE:C(10)	1112.469	103.8358	10.71373	0.0000
Mean dependent var S.E. of regression Sum squared resid Log likelihood Avg. log likelihood	740.5764 577.0212 2.47E+08 -3717.342 -4.936709	S.D. depende Akaike info cri Schwarz criter Hannan-Quin	nt var terion ion n criter.	871.3142 9.899979 9.961388 9.923637
Left censored obs Uncensored obs	325 428	Right censor Total obs	ed obs	0 753

OUTPUT 2

Wald Test: Equation: TOBIT			
Test Statistic	Value	df	Probability
F-statistic Chi-square	0.729663 2.188988	(3, 743) 3	

Null Hypothesis: C(4)=C(6)=C(9)=0

OUTPUT 3

Dependent Variable: HOURS Method: ML - Censored Extreme Value (Newton-Raphson / Marquardt steps) Date: 02/17/16 Time: 13:36 Sample: 1 753 Included observations: 753 Left censoring (value) at zero Convergence achieved after 9 iterations Coefficient covariance computed using the Huber-White method

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
C FAMINC NWIFEINC EXPER	1636.636 0.205555 -213.6543 35.44226	531.8561 0.021262 22.38386 13.79912	3.077216 9.667904 -9.545016 2.568443	0.0021 0.0000 0.0000 0.0102	
KIDSLT6	-39.27781 -562.0874	13.94171 156.2687	-2.817287 -3.596928	0.0048	
Error Distribution					
SCALE:C(7)	1113.790	104.0929	10.69996	0.0000	
Mean dependent var S.E. of regression Sum squared resid Log likelihood Avg. log likelihood	740.5764 585.3175 2.56E+08 -3719.091 -4.939032	S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		871.3142 9.896655 9.939641 9.913216	
Left censored obs Uncensored obs	325 428	Right censored obs Total obs		0 753	

OUTPUT 4

Gradients of the Objective Function Gradients evaluated at estimated parameters Equation: TOBIT Method: ML - Censored Extreme Value Specification: HOURS C FAMINC NWIFEINC EXPER AGE KIDSLT6

Variable	Sum	Mean	Weighted Grad.
С	1.47E-16	1.95E-19	4.55E-10
FAMINC	4.74E-12	6.29E-15	-1.74E-17
NWIFEINC	8.61E-15	1.14E-17	1.00E-12
EXPER	1.15E-15	1.53E-18	-1.06E-12
AGE	1.03E-14	1.37E-17	2.73E-13
KIDSLT6	5.24E-17	6.95E-20	-4.50E-10
SCALE:C(7)	3.13E-16	4.16E-19	1.05E-10

END OF TEST