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A. W. H. Phillips Memorial Lecture 
 Phillips' contributions: stabilization & control, growth, the Phillips 

Curve, the Lucas critique, & continuous time modelling. 

 I’ll consider the last of these contributions – summarize its 

influence on econometric issues surrounding temporal 

aggregation of data over the past ( ≈ ) 60 years. 

 This lecture will include some new results on the impact of 

temporal aggregation on various hypothesis tests used in 

econometrics. 
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Road Map 
 Continuous time econometrics – a New Zealand contribution 

 Temporal aggregation, selective sampling of time-series data: 

   1. Unit roots, & Cointegration, Granger causality 

   2. Economic dynamics 

   3. Model estimation 

   4. Hypothesis tests, with some new results  

   5. Forecasting performance 

 Modelling with mixed data frequencies 

 Summary & some open research questions 
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Bill Phillips & Continuous-Time Modelling 

 
Alban William Housego (Bill) Phillips (1914 – 1975) 
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 Pre-Phillips: Bachelier (1900), Wiener (1923), Bartlett (1946), 

Grenander (1950), Koopmans (1950).  

 

 

 

 

 

 

 

 Post-Phillips: Rex Bergstrom, Cliff Wymer, Peter Phillips. 

 Phillips (1956) Economica – Model formulation & estimation. 

 Phillips*(1959) Biometrika – The most general treatment.  

 Phillip (1962) Presentation at Nuffield College, Oxford – further 

estimation issues. 

 Phillips (1962) Incomplete paper – VARMA modelling. 

 Phillips (1966) Walras-Bowley Lecture, N.A. Meeting of the E.S. – 

Maximum Likelihood estimation of simultaneous equations 

models with lagged endogenous variables & MA errors. 
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The Case for Continuous-Time Econometrics  
 “The economy does not cease to exist in between observations.” 

(Bartlett, 1946;  Phillips, 1988). 

 "In the modern era, news arrives at shorter intervals and economic 

activities take place in a nonstop fashion." (Bergstrom and Nowman, 

2007; Yu, 2014). 

 “...the lag functions may be specified in a way which allows the 

length of the lag to be estimated rather than assumed.” 

  “A continuous time model .... can be specified and analysed 

independently of the observation interval of the sample to be used 

for estimation, and the forecasting interval is also independent of the 

observation interval.”    (Wymer, 2009) 

"Re-discovered" by Sims (1971 & Geweke (1978). 
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Some Basic Results 
 See Bergstrom (1984). 

 Typical discrete-time SEM:       

   Γ ∑ 	  

    ;   ; Σ   

 Lots of (identifying) restrictions on  and the  matrices. 

 Continuous time:   , … , ; 	 , … , . 

 Stock variable -   ; etc. 

 Flow variable -   ; etc. 
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 Continuous-time system. For simplicity, if no exogenous 

variables in the model: 

 
                     

 
 Then there is an exact discrete representation of the 

continuous-time model: 

	 	  

 

  ;   ;    
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 Lagged values of all of the variables in the model appear in all 

of the equations, and errors follow a vector MA process. It’s a 

VARMA model, with particular restrictions on parameters. 

 The form of the VARMA model doesn’t depend on the 

observation period – only on the form of the continuous-time 

system. 

 Use FIML estimation to get asymptotically efficient, & super-

consistent, estimates of . Pretty challenging in 1956! 

 Notice that Phillips’ work really made the case for (restricted) 

VARMA(X) modelling. Well ahead of its time. 
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Temporal Aggregation 

 This will be main focus in this lecture. 

 Flow variables – monthly to quarterly; quarterly to annual, etc. 

 Summing data over several periods before using them. 

 Rather analogous to the shift from Continuous time to Discrete 

time - integrating the data. 

 So, expect to encounter some similar modelling & inferential 

issues. 

 These are driven largely by MA effects caused by aggregation.  
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Selective Sampling 
 Stock variables – last quarter of year; middle month of quarter, 

etc. 

 As in the case of continuous-time modelling, this tends to be 

somewhat less problematic than temporal aggregation. 

 However, not totally innocuous. 

 Relationship to “missing observations” problem, but we're not 

imputing the data. 
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Some Early Contributions 
 Theil (1954), Nerlove (1959), Working (1960), Ironmonger (1959), 

Mundlak (1961), Telser (1967), Engle (1969, 1970), Moriguchi 

(1970), Zellner & Montmarquette (1971). 

 Temporal aggregation more of a problem for distributed lag, 

and dynamic, models than for static models. 

 The long-run properties of a model are largely unaffected by 

temporal aggregation, but the short-run properties can be very 

sensitive. 
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The BIG Picture 
 Does the specification of the model suit the form of the data? 

 Analogy with non-stationary time-series. 

 Features of data have implications for modelling, inference. 

 

 

 

 

 

 

 

N-S T-S: Spurious regressions; Unbalanced regressions; ECM, 

cointegration; implications for estimation, hypothesis testing 

& forecasting. Non-standard asymptotics. 

Aggregation: Alters many characteristics of time-series such 
as model dynamics, lag relationships; can alter causality, 
non-linearities; implications for estimation, hypothesis testing 
& forecasting. Lose asymptotic normality. 
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Implications for Time-Series Properties 
Spectral shape                 Granger (1966) 

 
 

 Granger & Mortenstern (1963), Hatanaka (1963), Medel (2014). 

 Implications for modelling – e.g., DSGE models – Sala (2014). 

 Periodogram relatively invariant to temporal aggregation or 

selective sampling, and to length of sample. 

 N.Z. merchandise imports (c.i.f.), 1984 – 2014:  
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White noise data 
 Aggregation using m observations introduces MA(m-1) effect 

         (m = 3 ; monthly to quarterly) 

 	~	 . . .			 0	,  

      ;    1 

 Y follows a non-invertible MA(2) process.  

 Fails conditions:     1   ;    1   ;    | | 1 

 Implications for MLE & testing, 
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White noise data 
 Systematic Sampling every mth observation implies White Noise 

 ~ . . .			 0	,  

                               (m = 3 ; monthly, end of quarter) 

                           (m = 3 ; monthly, middle of quarter) 

 ∗                   ;    ∗ /  

However: 

 /3          (m = 3 ; average over quarter) 

 Non-invertible MA(2) process, again. 

 In general,  …… /  ~ MA( -1) process 
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ARIMA processes 
 	~	ARIMA , , 	. 

  is the temporally aggregated or selectively sampled series. 

 Aggregation using m observations. 

 	~	ARIMA , , 	 where   / . 

 If  is AR(1), then  is ARMA(1,1) . 

 If  is a random walk, then  is IMA(1,1)  . 

 Systematic Sampling every mth observation. 

 	~	ARIMA , , 	 where   1 1 /  . 

 If  is a random walk, then  is also a random walk. 
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For either temporal aggregation, or systematic sampling: 

 If data are generated over a time interval that is small relative 

to the observation interval, then m will be large. 

 In this case the AR component of the process becomes 

irrelevant; the unit root components are unaltered; & the MA 

component simplifies. 

 For large enough m,   	~	IMA , 	.           See Tiao (1972). 

 In the case of a seasonal time-series, if , then process 

becomes regular non-seasonal ARIMA.     See Wei (1979, 2006). 
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Unit Roots and Cointegration 

Unit roots 

 Integrated time-series remain integrated under temporal 

aggregation.        See Lütkepohl (1987), Marcellino (1999). 

 ~	 1 	⇒ ≡ ~ 0    

                ⇒ ≡ 	∑ ∑  

                         +……+(	 ) 

                       		 ⋯… 	~	 0   

                ⇒ 	~	 1  . 
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 However, what about tests for stationarity/non-stationarity? 

 Pierce and Snell (1995): 

           ;    ~ ARMA( , ) ;  and  finite 

   :	 1    vs.   :	 /         ;  0 

(Sequence of local alternatives.) 

       Temporal aggregation or selective sampling; interval = . 

 

 

 

 

 ADF, PP, Hall-IV, tests, etc.  (Similarly for KPSS, etc.) 

“Any test that is asymptotically independent of nuisance 
parameters under both H0 and HA has a limiting distribution 
under both H0 and HA that is independent of .” 
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 What matters is the temporal span, not the number of obs. 

 Intuition – loss of power due to less observations is made up by 

increased “separation” of H0 and HA. 

 This is also essentially true in finite samples – see the Monte 

Carlo evidence of Pierce and Snell (1995), and others. 

N.Z. Imports data 

      T  ADF  lag   p  

1960M1 – 2014M3  651  -2.05  2   0.57 

1960Q1 – 2014Q1  217  -2.03  0   0.58 

1960 – 2013   54  -1.409  4   0.85 
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Cointegration 

 If  &  are cointgrated, so are  &        (Granger, 1988). 

                	~	 1   and  	~	 1  

    There exists a unique  such that  ≡ 	~	 0   . 

 

    ⇒ ≡ 	∑ ∑  

             +……+(	 ) 

           		 . . … 	~	 0   

          ⇒  and  are also cointegrated. 
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 Cointegration implies existence of an ECM for  &  of form: 

Δ Δ 	; 	Δ  

Δ Δ 	; 	Δ  

and at least one of  and  is non-zero. 

 Δ ≡ 	∑ ∑  

       	Δ Δ ⋯ Δ  

             	 Δ 	; 	Δ ⋯ 

                 Δ 	; 	Δ  

             	 Δ 	; 	Δ  
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 So, there must also be an ECM for  and  , but its lag 

structure may be different from that for  and  

 Recall “Early Contributions”. 

 The results of Pierce and Snell also apply to tests of 

cointegration – e.g., Engle-Granger, Johansen.    

 What matters is the span of the sample, not the sample size. 

 Marcellino (1996):      If  	~	 ,  then  

1.  The number & composition of the cointegrating vectors   

are invariant to temporal aggregation. 

2.  Loadings of aggregated & diasggregated ECT’s are same.  
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Granger Causality 
 (One) Definition: 

Let  Ω , 	; 0   and  Ω′ , , 	; 0  . 

 If there exists a 0  such that  	|	Ω′ 	 	|	Ω  , 

then 	 ⇒  with respect to Ω′  . 

 Usually test with  1 , using least squares optimal forecast . 

 Test of linear restrictions – special case – more later. 
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 Temporal aggregation can distort information sets. Past and 

future values of the data get “mixed up”. 

                 t*-2                               t*-1                                    t* 

A   

 

Q 

                 t*-8                               t*-4               t*-2               t* 

 

 A legitimate high-frequency VAR model will have a VARMA 

representation when data are temporally aggregated. See 

McCrorie & Chambers (2004).  

 

                    

                    

⊗
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 In the case of temporal aggregation: 
 
   1. If ⇏  , then ⇏  . 
    
   2. If ⟹  or ⟹ , then we can find ⟺ ; 

 or ⇏ ; and/or ⇏ . 

3. If ⟺ ,  then we can find only ⟹ ; or vice versa. 

 See Sims (1971), Wei (1982), Christiano & Eichenbaum 

 (1987), Marcellino (1999), Gulasekaran & Abeysinghe 

 (2002), Breitung and Swanson (2002). 

 Same issues arise if data are non-stationary, and/or seasonal.  

 See Gulasekaran & Abeysinghe (2002).  
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Example                                      Giles (2014) 
 

Crude Oil and Wholesale Gasoline Prices (2009 - 2013) 
     

Daily       Weekly         Monthly 
⇏  

    28     8    2  
    49.693    4.909   0.192 

    0.007    0.767   0.908 
 

⇏  
    28     8    2 

    32.714    6.584   3.659 
    0.246    0.582   0.161 
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 Granger-causality testing has been extended to the 

continuous-time case. See Harvey & Stock (1989), Hansen & 

Sargent (1991), and McCrorie & Chambers (2004). 

 Empirical example given by McCrorie & Chambers – 

Money  ⟹		Income ?      Monthly U.S. data, 1960M1 – 2001M12. 

    Continuous-time; MA(3)        Discrete Monthly 
: ⇏           

LRT     34.701         10.761 

     2          12 

      0.000              0.549  
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Temporal Aggregation & Economic Dynamics 

 Not surprisingly, the characteristics of a dynamic model can 

be altered by temporal aggregation of the data. 

 Early contributions related to Distributed Lag models – e.g., 

Mundlak (1961), Moriguchi (1970), Wei (1978). 

 Aggregation introduces a specification bias in such models. 

 In Partial Adjustment models this can lead to estimator 

inconsistency.  

 Important implications for evaluation of multipliers & economic 

policy analysis – very much what Phillips was concerned with. 
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Temporal Aggregation & Model Estimation 
 One issue - loss of estimator efficiency due to MA effect. 

 More complex than originally thought. 

 Plosser & Schwert (1977) – consider non-invertible MA error 

processes due to over-differencing. 

 Results have implications for effects of temporal aggregation. 

 Estimation and testing when parameters take values on 

boundary of parameter space. e.g., Moran (1971). 

 MLE’s & test statistics don’t have usual desirable asymptotic 

properties. e.g., Sargan & Bhargava (1983). 
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 Monte Carlo experiment 

 Replications = 20,000 

 DGP – linear model with MA(2) errors 

 MLE – allowing for MA(2) errors 

 True parameter value = 1.0  
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Impact of Aggregation on Hypothesis Tests 
General observations 
 Recall, temporal aggregation introduces special MA effects. 

 These are likely to show up in errors of regression models. 

 Expect this to distort sizes and impact on powers of tests, at 

least in finite-sample case.  

 Look at some standard model specification tests. 

 Discussion is only illustrative – not comprehensive. 
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Tests of linear restrictions 

 The main issue is impact of MA process on the tests (e.g., t, F). 

 Regression model t-statistics: Plosser & Schwert – leptokurtic. 

 Effect on tests depends on form of the data & restrictions, and 

also on parameters of MA process – “nuisance” parameters. 

 “Bounds tests” of Watson (1955), Watson & Hannan (1956), 

Vinod (1976), Kiviet (1979, 1980), Giles & Lieberman (1993). 

 Bounds diverge as we approach non-invertible case. 

 Also Rothenberg (1984), and “exact tests” – Dufour (1990). 

 Krämer (1989) – AR errors; Giles & Godwin (2014) - MA errors. 
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Example         Giles & Godwin (2014) 

 	 	    ;   	~	 . . . 0	, 1    

 0.1 0,1  

 	 	    ;  3                

  :	 0      vs.     :	 0   

         t-test is UMP 

20,000 replications in MC experiment 
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                                        Actual sizes 

* \ : 12   50   100   500   5000       5000 

1%  3.1   8.7   8.8   8.7   9.9           24.9 

  (11.6)  (4.6)  (3.1)  (1.9)  (1.2)         (3.4) 

5%  10.5  16.6  17.2  16.9  17.1          31.8  

  (21.4)  (11.2)  (9.1)  (6.9)  (5.6)         (9.8) 

10% 17.2  22.6  23.3  22.9  22.9          35.9 

  (27.4)  (17.0)  (15.1)  (12.4)  (10.8)   (15.9) 

(Tests based on Newey-West std. errors)                  Results for 12 
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Tests of linearity 
 Effects of both temporal aggregation & systematic sampling 

tend to simplify non-linearities and reduce the power of 

associated tests. 

 Brännäs & Ohlsson (1999), Granger & Lee (1999), Teles & Wei 

(2000). 

 Models - Bilinear, Threshold, Sign, Rational Nonlinear AR: TAR, 

SGN, NAR. 

 Tests – White’s Neural Network, Tsay, White’s Dynamic 

Information, Ramsey’s RESET, Hinich’s Bispectral. 

 Illustrative Monte Carlo results from Granger & Lee.  H0: Linear; 

k corresponds to “m”; T = 200; Replications = 1,000; 5%. 
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 Rejection frequencies (i.e., powers)using  simulated (asymptotic) 

critical values.  
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Tests of normality        Giles & Godwin (2014) 

	 	    ;   	~	 . . . 0	, 1    

 0.1 0,1  

 	 	    ;      3; 12	                

  :	 	~	     vs.     :	 	~	        

      Jarque-Bera (Bowman-Shenton, 1975) “Omnibus Test” 

         20,000 replications in MC experiment 
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Actual sizes of J-B Test 
 

* \ : 12   50   100   500   5000        

1%  0.2   1.7   1.8   1.6   1.0 

           

5%  0.8   3.6   4.0   4.5   4.9 

      

10% 1.5   5.2   6.3   8.1   10.0 
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Actual sizes of J-B Test 
3) 

* \ : 12   50   100   500   5000        

1%  0.2   1.7   1.8   1.6   1.0 

0.2   2.1   3.1   4.4   5.0            

5%  0.8   3.6   4.0   4.5   4.9 

0.7   4.3   6.6   11.3  13.9           

10% 1.5   5.2   6.3   8.1   10.0 

1.3   6.6   10.2  17.9  21.6           

  

    (Mean & Variance of sampling distribution ⟶ 3	&	10  as  → ∞) 
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Powers of J-B Test 
	 ;  

 
* \ : 12   25   50   100   250   500   

1%  3.5   27.3  55.7  84.2  99.4  100 

  0.6           6.8   22.2  45.6  78.8      95.9 

5%  7.3   33.9  63.1  88.8  99.8       100 

  1.4       11.1  29.0  53.5  88.4      97.6 

10% 10.0  38.1  67.4  91.2  99.9       100 

  2.1      14.3  33.6  58.4  87.1      98.2 

Test can be “biased” (even without aggregation) 
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Temporal Aggregation & Forecast Performance 
 Consider linear (possibly seasonal) time-series models. 

 Temporal aggregation usually reduces forecast performance. 

 This is because the full information set is no longer available. 

 Formalize this (Wei, 1979). 

  :   – period ahead optimal forecast based on . 

  :   – period ahead optimal forecast based on . 

 , .  /	 .  . 

 Then: 

 0 , 1  ; for all  and  . 

 ≡ lim → , 1 ; for all , if 0 . 

 ≪ 1 and → 1 if → ∞, only if 0 . 
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Example            (Anathanasopoulos et al., 2011) 
Tourism Forecasting With 366 Monthly Time-Series 

 

Effects of Temporal Aggregation on Forecast Performance 

(MAPE, %) 

     ETS      ARIMA    ForePro 

                          

Yearly   11.79    16.49    10.99   14.59  11.44   15.36 

m = 4   10.32   14.32     9.94   13.98  9.95   14.48 

m = 12   10.29   14.29     9.93   13.96  9.92  14.46 
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 Similar results found for SVAR models by Georgoutsus et al. 

(1998). Preferable to forecast with disaggregated data & then  

aggregate, rather than forecast with aggregate data. 

 

Quarterly Ex-post Forecasting Results (h = 16) 

Model                U66    UB    US    UC 

M 0.015  0.012  0.268   0.020  0.002  0.982 

Qrtly Y  0.087 0.304  0.891   0.040  0.049  0.907 

r  0.003  0.014  0.174   0.002  0.013 0.984 

M  0.015  0.087  0.652   0.096  0.696 0.206 

Mthly Y   0.087 0.312  1.276   0.094  0.668  0.236 

r    0.003  0.106  0.623   0.088  0.723  0.188 
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MIDAS Modelling 
 MIxed DAta Sampling regression models. 

 Eric Ghysels & co-authors.  

 Making the most of multi-frequency time-series data, without 

resorting to imputation. 

 Avoids unnecessary temporal aggregation. 

 Easy to implement in R, or in MATLAB. 

 Lots of recent developments – 2013, 2014. 
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Summary 
 Bill Phillips pioneered continuous-time modelling in economics. 

 Many of the issues that his work revealed also arise when we 

use discrete data that have been temporally aggregated. 

 Aggregation affects the time-series properties of our data due 

to Moving-Average effects isolated by Phillips. 

 These, in turn, impact on virtually all of our estimators, tests, 

forecasts. Asymptotics can become non-standard. 

 Important implications for policy analysis. 

 Don’t aggregate if you don’t have to! 
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Some Open Research Questions 
 “The topic of mixed frequency data, temporal aggregation 

and linear interpolation is being researched again more 

intensely in recent years ..…”  Ghysels & Miller (2014) 

 Can we use tests of MA process non-invertibility to help assess 

the magnitude of temporal aggregation “problems”?  

Tests: Tanaka & Satchell (1989), Tanaka (1990), Larsson (2014). 

 What are the effects of temporal aggregation on various tests? 

 How far can we go with MIDAS modelling? 

 What are the gains of modelling in the frequency domain? 



 

52 
 

Slides and Bibliography 

 
davidegiles.com      (“Downloads” ; “NZAE 2014”) 

 

 

Contact Information 

 
dgiles@uvic.ca                     davegiles.blogspot.com 


