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Example 1 
Let X and Y be a pair of random variables whose joint distribution is described by the kernel: 
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Notice that for the conditional distribution for X, given Y, we have: 
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which is Binomial with “parameters” n and y. Also, notice that for the conditional distribution for 
Y, given X, we have: 
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which is Beta, with “parameters” )( x  and )(  xn . 
 
The following EViews program code can be used to obtain the marginal distributions of X and Y, 
using MCMC. Specifically, you can show that E(X) = 3.3, E(Y) = 0.33, S.D.(X) = 2.246, and S.D. 
(Y) = 0.178. These results do not depend on the initial value for Y, which is set to 0.1 in the 
following code. (Note that the initial value of Y should be between zero and unity.) 
 
rndseed 123456 
!nrep=50000 
vector (!nrep) margy 
vector (!nrep) margx 
scalar n=10 
scalar y=0.1 
scalar a=2 
scalar b=4 
for !i=1 to !nrep 
   scalar x=@rbinom(n,y) 
   margx(!i)=x 
   scalar y=@rbeta(x+a,n-x+b) 
   margy(!i)=y 
next 
smpl 1 !nrep 
mtos(margx,px) 
mtos(margy,py) 
smpl 1001 !nrep 
px.hist  
py.hist 
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Example 2 
Consider the following estimation problem: 
 
We have a sample of n “count data” observations that have been generated by two Poisson 
processes. The first m values come from a Poisson distribution with unknown mean, θ1, and the 
rest of the observations come from an independent Poisson distribution with known mean of θ2. 
The interesting part of the problem is that the value of m is also unknown. 
 
As θ1 must be positive, we decide to put a Gamma prior on this parameter. We put an 
independent uniform prior on m, over the range 1 to n: 
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The likelihood function is: 
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So, recalling that θ2 is known, the joint posterior for the parameters is: 
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The conditional posterior density for θ1 is: 
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which is Gamma, with parameters [1/(m + (1/b1))] and 
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Further, the conditional posterior for m is a completely non-standard p.m.f. on [1 , n]: 
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We can simulate drawings from this discrete distribution by using the so-called “Quantile 
Method”. 
 
The following EViews program code uses MCMC to determine the marginal posteriors for m and 
θ1, which enables us to obtain Bayes estimators for these two parameters.  
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' PROGRAM TO UNDERTAKE BAYESIAN ANALYSIS OF A POISSON PROCESS WITH A CHANGE-
POINT AT AN UNKNOWN LOCATION IN THE DATA 
' WE HAVE N=10 COUNT DATA VALUES IN THE SAMPLE 
 
' THE SECOND PART OF THE PROCESS IS KNOWN TO BE POISSON WITH A MEAN OF 6 
 
' A GAMMA PRIOR IS USED FOR THE FIRST POISSON MEAN, AND A UNIFORM PRIOR IS USED FOR 
THE CHANGE-POINT 
 
'SET NUMBER OF REPETITIONS AND LENGTH OF "BURN-IN" PERIOD 
!nrep=1000 
!burn=201 
!n=20 
' INITIALIZE SOME VALUES 
'******************************** 
rndseed 123456 
' MEAN OF GAMMA DISTRIBUTION = (R1*B1) & VARIANCE IS R1*(B1^2), WHERE B1 IS THE SCALE 
PARAMETER AND R1 IS THE SHAPE PARAMETER. 
 
' SET THE PRIOR MEAN FOR THETA1 TO BE 6, AND THE PRIOR VARIANCE TO BE 0.06  ‘(SD = 0.245). 
THIS IMPLIES THE FOLLOWING VALUES FOR R1 AND B1 (BETA1): 
scalar r1=600 
scalar b1=.01 
'THETA2 IS KNOWN TO BE 6.0 
scalar t2=6 
 
vector(!nrep) margt1 
vector(!nrep) margm 
vector(!n) pm 
vector(!n) cusum 
vector(!n) mm 
smpl 1 !n 
scalar t1=1 
 
scalar m 
smpl 1 !n 
series sumofy=@sum(y) 
series sumy=0 
series sumy1 
 
'****************************** 
'START OF THE MCMC LOOP 
for !i=1 to !nrep 
 
' GENERATE A NEW VALUE FOR M USING THE "QUANTILE METHOD" 
' FIRST CONSTRUCT THE CONDITIONAL POSTERIOR P.D.F. AND C.D.F. FOR M 
 
scalar sum=0 
scalar sump=0 
for !j=1 to !n 
smpl 1 1+!j-1 
series sigy=@sum(y) 
scalar siggy=sigy(1) 
mm(!j)=exp(!j*(t1-t2))*((t1/t2)^siggy) 
sum=sum+mm(!j) 
next 
for !j = 1 to !n 
pm(!j)=mm(!j)/sum 
sump=sump+pm(!j) 
cusum(!j)=sump 
next  
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' NOW IMPLEMENT THE "QUANTILE METHOD" ITSELF TO ACTUALLY GENERATE RANDOM M 
VALUES FROM THE NON-STANDARD CONDITIONAL POSTERIOR DISTRIBUTION 
 
scalar u=@runif(0,1) 
for !j = 1 to !n 
m=!j 
if  u < cusum(!j) then 
!j=!n 
endif 
next 
margm(!i)=m 
 
 
' NOW GENERATE THE CONDITIONAL POSTERIOR FOR THETA1  
 
sumy=0 
for !k=1 to m 
sumy=sumy+@elem(y,!k) 
next 
sumy1=sumofy-sumy 
scalar par1=1/(m+1/b1) 
scalar par2=r1+sumy(1) 
 t1=@rgamma(par1, par2) 
margt1(!i)=t1 
 
next 
 
' END OF THE MCMC LOOP 
 
smpl 1 !nrep 
' CONVERT VECTORS TO SERIES TO FACILITATE PLOTS, ETC. 
mtos(margm,postm) 
mtos(margt1,postt1) 
mtos(pm,pms) 
 
' ALLOW FOR "BURN-IN" PERIOD.   
smpl !burn !nrep  
postm.hist 
postt1.hist 
 
 
 


