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The usual starting point for modeling count data (i.e., data that take only non-negative integer 

values) is the Poisson distribution, whose p.m.f. is given as: 

 

!/)exp(].[Pr yyY y      ;    y = 0, 1, 2, …….. 

 

As is well-known, λ ( > 0) is both the mean and variance of this distribution, so it is described as 

“equi-dispersed”. In contrast, many data are “over-dispersed”, in that their variance exceeds their 

mean, so this reduces the usefulness of the Poisson distribution. Allowing the variance to be 

modeled in turn by a gamma distribution, leads to familiar Negative Binomial (NegBin II) 

distribution. The latter can capture over-dispersion in the data. 

 

In linear regression we “explain” the (conditional) mean of the dependent variable as a function 

of parameters and covariates, so it is natural to do the same here, and introduce covariates into the 

model by assigning: 

)'exp(  x   , 

where use of the exponential function ensures that λ > 0, as is obviously required.  Maximum 

likelihood estimation of the parameters is then straightforward, especially as the log-likelihood 

function is strictly concave (as it is also for the NegBin II model). 

 

In terms of the ensuing discussion, it is important to recognize that the Poisson model, and 

standard variants that allow for over-dispersion, cannot describe multi-modal data. (More 

correctly, if λ is integer, then the Poisson distribution has modes at λ and (λ – 1), but never at non-

adjacent values. If λ is non-integer, the single mode occurs at [λ].) 

 

The zero-inflated Poisson (ZIP) regression model is a modification of this familiar Poisson 

regression model that allows for an over-abundance of zero counts in the data. This phenomenon 



is widely encountered in practice. Standard references for this model include Mullahy (1986), 

Heilbron (1989), and Lambert (1992). Excellent discussions are also provided by Cameron and 

Trivedi (1998) and Winkelmann (2000). 

 

The essential idea is that the data come from two regimes. In one regime (RI) the outcome is 

always a zero count, while in the other regime (RII) the counts follow a standard Poisson process. 

Suppose that 

 

iIi Ry  ].[Pr ; )1(].[Pr iIIi Ry      ;        i = 1, 2, …, n. 

 

Then,  
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and 
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As before, covariates enter the model through the conditional mean, i , of the Poisson 

distribution: 

)'exp(  ii x   , 

where 'ix  is a )1( k  vector of the ith observation on the covariates, and β is a )1( k vector of 

coefficients. 

 

Clearly,  
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and 
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and so this framework also accommodates over-dispersion of the data (if 0i ). This over-

dispersion does not arise from heterogeneity, as is the case when the Poisson model is generalized 

to the Negative Binomial model. Instead, it arises from the splitting of the data into the two 

regimes. In practice, the presence of over-dispersion may come from one or both of these sources 

(Mullahy, 1986; Greene, 2003, p.750).  



Following Lambert (1992), it is common, and convenient, to model i  using a Logit model, so 
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where zi is a )1( p  vector of the ith observation on some covariates, and γ is a )1( p vector of 

additional parameters. Of course, the elements of zi may include elements of xi, and a Probit (or 

other) specification may be substituted for the Logit specification. 

 

If we have n independent observations in our sample, it is readily seen that the log-likelihood 

function may be written as 
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(For example, see Cameron and Trivedi, 1998, p.126.) 

 

To code up the above log-likelihood function for use in EViews (or any other package that 

requires a single observation on the log-density, and then sums over all n, assuming independence 

of the observations), we need to take account of the different ranges of summation. The third term 

in the log-likelihood requires no modification as the range of summation is for all n. To deal with 

the ranges of summation in the first two terms, we can construct a dummy variable, Di, which 

takes the value unity if yi = 0, and zero otherwise. The ith observation on the log-likelihood would 

then be coded as: 
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Finally, note that the Negative Binomial regression model may be extended to allow for zero-

inflation of the data in a corresponding and straightforward manner. In addition, Giles (2007) 

shows how “inflated” counts at several values of the dependent variable may be modeled using a 

“multinomial inflated Poisson” (MIP) model; and Giles (2010) applies the Hermite distribution to 

achieve the same objective. 
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