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Abstract 

Care must be taken when interpreting the coefficients of dummy variables in semi-logarithmic 
regression models. Existing results in the literature provide the best unbiased estimator of the 
percentage change in the dependent variable, implied by the coefficient of a dummy variable, and of 
the variance of this estimator. We extend these results by establishing the exact sampling 
distribution of an unbiased estimator of the implied percentage change. This distribution is non-
normal, and is positively skewed in small samples. We discuss the construction of bootstrap 
confidence intervals for the implied percentage change, and illustrate our various results with two 
applications: one involving a wage equation, and one involving the construction of an hedonic price 
index for computer disk drives. 
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1. Introduction 

 

Semi-logarithmic regressions, in which the dependent variable is the natural logarithm of the 

variable of interest, are widely used in empirical economics and other fields. It is quite common 

for such models to include, as regressors, “dummy” (zero-one indicator) variables which signal 

the possession (or absence) of qualitative attributes. Specifically, consider the following model: 
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where the iX ’s are continuous regressors and the jD ’s are dummy variables.  

 

The interpretation of the estimated regression coefficients is straightforward in the case of the 

continuous regressors in (1): 100 ib̂  is the estimated percentage change in Y for a small change 

in iX . However, as was pointed out initially by Halvorsen and Palmquist (1980), this 

interpretation does not hold in the case of the estimated coefficients of the dummy variables. The 

proper representation of the proportional impact, pj, of a zero-one dummy variable, Dj , on the 

dependent variable, Y, is ]1)[exp(  jj cp , and there is a well-established literature on the 

appropriate estimation of this impact. More specifically, and assuming normal errors in (1), 

Kennedy (1981) proposes the consistent (and almost unbiased) 

estimator, 1))]ˆ(ˆ5.0exp(/)ˆ[exp(ˆ  jjj cVcp , where jĉ  is the OLS estimator of jc , and )ˆ(ˆ
jcV  is 

its estimated variance. Giles (1982) provides the formula for the exact minimum variance 

unbiased estimator of jp , and Van Garderen and Shah (2002) provide the formulae for the 

variance of the latter estimator, and the minimum variance unbiased estimator of this variance. 

Derrick (1984) and Bryant and Wilhite (1989) also investigate this problem. 

  

Surprisingly, this literature is often overlooked by some practitioners who interpret jĉ  as if it 

were the coefficient of a continuous regressor.  However, there is a diverse group of empirical 

applications that are more enlightened in this respect . Examples include the studies of Thornton 

and Innes (1989), Rummery (1992), Levy and Miller (1996), MacDonald and Cavalluzzo (1996), 

Lassibille (1998), Malpezzi et al. (1998) and Fedderson and Maennig (2009). There is general 

agreement on the usefulness of jp̂  (although see Krautmann and Ciecka, 2006 for an alternative 
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viewpoint). However, the literature is silent on the issue of the precise form of the finite-sample 

distribution of this statistic. Such information is needed in order to conduct formal inferences 

about jp . Asymptotically, of course, jp̂  is the maximum likelihood estimator of jp , by 

invariance, and so its limit distribution is normal, in general. As we will show, however, 

appealing to this limit distribution can be extremely misleading even for quite large sample sizes. 

In addition, Hendry and Santos (2005) show that jp̂  will be inconsistent and asymptotically non-

normal for certain specific formulations of the dummy variable, so particular case must be taken 

in such cases. 

 

In the next section we provide more details about the underlying assumptions for the problem 

under discussion and introduce some simplifying notation. Our main result, the density function 

for jp̂ , is derived in section 3, and in section 4 we present some numerical evaluations and 

simulations that explore the characteristics of this density. Section 5 discusses the construction of 

confidence intervals for jp  based on jp̂ , and two empirical applications are discussed in section 

6. Section 7 concludes. 

 

2. Assumptions and Notation 

 

Consider the linear regression model (1) based on n observations on the data: 
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(where the continuous regressors may also have been log-transformed, without affecting any of 

the following discussion or results), and the random error term satisfies ),0(~ 2IN  . Let  jjd  

be the jth diagonal element of 1)'( XX , where ),....,,,.....,,( 2121 ml DDDXXXX  . In addition, 

let jĉ be the OLS estimator of jc , so that ),(~ˆ 2
jjjj dcNc  . The usual unbiased estimator of the 

variance of jĉ  is 

  uddcV jjjjj )/(ˆ)ˆ(ˆ 22   , 

where )( mln  , vee /)'(ˆ 2  , e is the OLS residual vector, and 2~ u . 

          

Giles (1982) shows that the exact minimum variance estimator of  pj  is 
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He also shows that the approximation, jp̂ , provided by Kennedy (1981) is extremely accurate 

even in quite small samples. Van Garderen and Shah (2002) offer some further insights into the 

accuracy of this approximation, and provide strong evidence that favours its use. They show that 

jp~  may be expressed more compactly as 

 

    14/)ˆ(ˆ;)2/()ˆexp(~
10  jjj cVFcp    ,            (3) 

 

where .);(.10 F  is the confluent hypergeometric limit function (e.g., Abramowitz and Segun, 

1965, Ch.15 ; Abadir, 1999, p.291). In addition, they derive the variance of jp~ , the exact 

unbiased estimator of this variance, and a convenient approximation to this variance estimator as 

is discussed in section 5 below. 

 

Hereafter, and without loss of generality, we suppress the “j” subscripts to simplify the notation. 

Our primary objective is to derive the density function of the following statistic, which estimates 

the proportional impact of a dummy variable on the variable Y  itself, in (1): 

 

  1))]ˆ(ˆ5.0exp(/)ˆ[exp(ˆ  cVcp  .          

 

Note that 1ˆ p .  

 

3. Main Result 

 

First, consider the two random components of p̂ , and their joint probability distribution. 

 

Lemma 1: Let )ˆexp(cx  , and ))ˆ(ˆ5.0exp( cVy  . The joint probability p.d.f. of x and y is:  
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where  
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Proof: Under our assumptions, the random variable )ˆexp(cx  is log-normally distributed, with 

density function: 

 )}2/(][lnexp{
2

1
)( 22 dcx

dx
xf 


   ;             x > 0 .            (4) 

Let )exp())ˆ(ˆ5.0exp( kucVy  , where )2/( 2  dk  . As ĉ and 2̂  are independent, so are x 

and y. Note that the density of a 2
  variate, u, is 
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It follows immediately that the p.d.f. of y is 
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Using the independence of x and y,  

 

 )}2/(][lnexp{)(ln"),( 2212/))/(1(1 2
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We now have the joint p.d.f. of the two random components of p̂ , and this can now be used to 

derive the pd.f. of p̂  itself. 

 

Theorem 1: The exact finite-sample density function of p̂  is 
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where  is the regression degrees of freedom, 2  is the regression error variance, d is the 

diagonal element of the 1)'( XX matrix associated with the dummy variable in question, c is the 

true value of the coefficient of that dummy variable, )2/(1 2d  , cp  )1ˆln( , and 

.);.,(.11F  is the confluent hypergeometric function (e.g., Gradzshteyn and Ryzhik, 1965, 

p.1058). 

 

Proof: Consider the change of variables from x and y to )(ln cxw   and yyxp /)(ˆ  . The 

Jacobian of the transformation is 2)]1ˆ/()[exp(  pcw , so 

 

12/221)/( )]1ˆln()}[/()]()2/[(exp{)1ˆ(")ˆ,(
2     pcwdcwwpkpwf dv  ; 

 

for cpwp  )1ˆln(;1ˆ .         (10) 

 

The marginal density of p̂  can then be obtained as 

 

  
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2
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                 (11) 

where cp  )1ˆln( .  

 

Making the change of variable, )1ˆln(  pcwz , we have 
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Then, defining )/(1 2d  ,  (12) can be written as: 
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Then, using the integral result 3.462 (1) of Gradzshteyn and Ryzhik (1965, p.337), 
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for 1ˆ p , where (.)D  is the parabolic cylinder function (Gradzshteyn and Ryzhik, 1965, 

p.1064). Using the relationship between the parabolic cylinder function and (Kummer’s) 

confluent hypergeometric function, we have: 
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where the confluent hypergeometric function is defined as (Gradzshteyn and Ryzhik, 1965, 

p.1058): 
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Parenthetically, Pochhammer’s symbol is 
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where it is understood that empty products in its construction are assigned the value unity. So, 

recalling the definition of  "k  in (9), the density function of p̂  can be written as: 
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4. Numerical Evaluations 

 

Given its functional form, the numerical evaluation of the density function in (18) is non-trivial. 

A helpful discussion of confluent hypergeometric (and related) functions is provided by Abadir 

(1999), for example, and some associated computational issues are discussed by Nardin et al. 

(1992) and Abad and Sesma (1996). In particular, it is well known that great care has to be taken 

over the computation of the confluent hypergeometric functions, and the leading term in (18) also 

poses challenges for even modest values of the degrees of freedom parameter,  . Our evaluations 

were undertaken using a FORTRAN 77 program, written by the author. This program 

incorporates the double-precision complex code supplied by Nardin et al. (1989), to implement 

the methods described by Nardin et al. (1992), for the confluent hypergeometric function; and the 

GAMMLN routine from Press et al. (1992) for the (logarithm of the) gamma function. Monte 

Carlo simulations were used to verify the exact numerical evaluations, and hence the validity of 

(18) itself. 

 

Figures 1 and 2 illustrate )ˆ( pf  for small degrees of freedom and various choices of the other 

parameters in the p.d.f.. The true value of p is 6.39 in Figure 1, and its values in Figure 2 are 

2980.0 (c = 8) and 4446.1 (c = 8.4).  

 

The quality of a normal asymptotic approximation to )ˆ( pf  has been explored in a small Monte 

Carlo simulation experiment, involving 5,000 replications, with code written for the SHAZAM 

econometrics package (Whistler et al., 2004). The data-generating process used is 

 

iiiii cDXbXbaY  2211)ln(  ;    

],0[...~ 2 Ndiii   ;     i = 1, 2, 3, …., n.                     (19) 
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Figure 1: p.d.f.'s of p-hat
( v = 5, c = 2, d = 0.022)
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Figure 2: p.d.f.'s of p-hat
(v  = 10, d = 1.5, sigma-squared = 2.4)
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The regressors X1 and X2 were (pre-) generated as 2
1  and standard normal variables respectively, 

and held fixed in repeated samples. We considered a range of sample sizes, n, to explore both the 

finite-sample and asymptotic features of )ˆ( pf ; and we set a = 1, b1 = b2 = 0.1 c = 0.5, and 

22  . The implied true value of p is 0.65, and the value of d is determined by the data for X, 

the construction of the dummy variable, D, and the sample size, n, and two cases can be 

considered. First, the number of non-zero values in D is allowed to grow at the same rate of n, so 

the usual asymptotics apply. In this case we set D = 1 for i = 1, 2, …, )2/(n  , and zero otherwise. 

The sample 2R values for the fitted regressions are typical for cross-section data. Averaged over 

the 5,000 replications, they are in the range 0.423 (n = 10) to 0.041 (n = 15,000). Second, the 

number of the non-zero values in D is fixed at some value, Dn , in which case the usual 

asymptotics do not apply. More specifically, in this second case the OLS estimator of c is 

inconsistent, and its limit distribution is non-normal. This arises as a natural generalization of the 

results in Hendry and Santos (2005), for the case where Dn = 1. In this second case we set Dn = 

5, and assign only the last five values of D to unity, without loss of generality.  

 

Table 1 reports summary statistics from this experiment, namely the %Bias of p̂ , and the 

standard deviation and skewness and kurtosis coefficients for its empirical sampling distribution. 

All of the p-values associated with the Jarque-Bera (J-B) normality test are essentially zero, 

except the one indicated. As we can see, for Case 1 (where standard asymptotics apply) the 

consistency of  p̂  is reflected in the decline in the % biases and standard deviations as n 

increases. For small samples, the distribution of p̂  has positive skewness and excess kurtosis, as 

expected from Figures 1 and 2. In Case 2 the usual asymptotics do not apply. The inconsistency 

of p̂  is obvious, as is the non-normality of its limit distribution. The latter is positively skewed 

with large positive excess kurtosis. Figures 3 and 4 illustrate the sampling distributions of p̂  

when  n = 1,000, for Case 1 and Case 2 respectively in Table 1.  
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Table 1: Characteristics of Sampling Distribution for p̂  

Case 1: )2/(nnD   

 

n    d         %Bias( p̂ )             S.D.( p̂ )    Skew        Excess Kurtosis    

   

10  0.528  13.057  2.470  5.395            47.425 

20  0.202  4.335  1.187  2.338  9.431 

50  0.081  4.280  0.722  1.535  4.457 

100                    0.040  1.987  0.484  0.979  1.878 

1000  0.004  0.696  0.149  0.165             -0.029  

5000  0.001  0.177  0.065  0.156  0.197 

15000  4103   0.045  0.037  0.070  0.034* 

 

Case 2: 5Dn  

 

n    d           %Bias( p̂ ) S.D.( p̂ ) Skew        Excess Kurtosis   

         

10  0.462  9.100  2.091  4.225  29.437 

20  0.282  5.587  1.490  3.636  29.490 

50  0.192  2.811  1.171  2.508  12.452 

100  0.190  4.461  1.147  2.220    8.459 

1000  0.168  -1.152  1.013  1.839    6.302 

5000  0.167  -0.991  1.034  2.119    8.618 

15000  0.167  -1.794  1.013  2.075    7.596 

  

* J-B  p-value = 0.115.  J-B p-values for all other tabulated cases are zero, to at least 3 decimal places. 
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5. Confidence Intervals 

 

For very large samples, p̂  converges to the MLE of p, and the usual asymptotics apply. So, 

inferences about p can be drawn by constructing standard (asymptotic) confidence intervals by 

using the approximation )]ˆ(,0[)ˆ( pVNppn
d
 , where   

 

  1)]ˆ([);2/())ˆ(exp()ˆ2exp()ˆ( 2
10  cVFcVcpV           (20) 

 

is derived by van Garderen and Shah (2002, p.151). They also show that the minimum variance 

unbiased estimator of  )ˆ( pV  is 

 

     




  )ˆ(ˆ;)2/()ˆ(ˆ)4/(;)2/([)ˆ2exp()ˆ(ˆ

10
2

10 cVFcVFcpV   .     (21) 

 

Here, )ˆ(ˆ cV  is just the square of the standard error for ĉ  from the OLS regression results, and 

.)(.;10 F  is the confluent hypergeometric limit function defined in section 2. Van Garderen and 

Shah (2002, p.152) suggest using the approximately unbiased estimator of )ˆ( pV , given by 

 

   ))ˆ(ˆ2exp())ˆ(ˆexp()ˆ2exp()ˆ(
~

cVcVcpV   ,         (22) 

 

and they note that in this context it is superior to the approximation based on the delta method. 

So, using (22) and the asymptotic normality of p̂ , large-sample confidence intervals are readily 

constructed. 

  

In small samples, however, the situation is considerably more complicated. Although p̂  is 

essentially unbiased (case 1), and a suitable estimator of its variance is available, Figures 1 and 2 

and the results in Table 1 indicate that the sampling distribution of p̂  is far from normal, even for 

moderate sample sizes. The complexity of the density function for p̂  in (18), and the associated 

c.d.f., strongly suggest the use of the bootstrap to construct confidence intervals for p.  
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We have adapted the Monte Carlo experiment described in section 4 to provide a comparison of 

the coverage properties of bootstrap percentile intervals and intervals based (wrongly) on the 

normality assumption together with the variance estimator )ˆ(
~

pV . We use 1,000 Monte Carlo 

replications and 999 bootstrap samples – the latter number being justified by the results of Efron 

(1987, p.181). In applying the bootstrap to the OLS regressions we use the “normalized residuals” 

(Efron, 1979; Wu, 1986, p.1265). We limit our investigation to “Case 1” as far as the construction 

of the dummy variable in model (19) is concerned, so that the usual asymptotics apply to ĉ  (and 

hence p̂ ).  

 

The results appear in Table 2, where cL  and cU are the lower and upper end-points of the 95% 

confidence intervals. It will be recalled from Table 1 that the density for p̂  is positively skewed.  

So, in the case of the bootstrap confidence intervals the upper and lower end-points are taken as 

the 0.025 and 0.975 percentiles of the bootstrap samples for p̂ , averaged over the 999 such 

samples. In the case of the normal approximation the limits are )ˆ(
~

96.1ˆ pVp  . In each case, 

average values taken over the 1,000 Monte Carlo replications are reported in Table 2. A standard 

bootstrap confidence interval has second-order accuracy. That is, if the intended coverage 

probability is, say, α, then the coverage probability of the bootstrap confidence interval is 

)( 1 nO . We also report the actual coverage probabilities (CP), and their associated standard 

errors, for the intervals based on the normal approximation and )ˆ(
~

pV . The confidence intervals 

based on the normal approximation are always “shifted” downwards, relative to the bootstrap 

intervals. The associated CP values are less than 0.95, but approach this nominal level as the 

sample size increases. For sample sizes 100n  the coverage probabilities of the approximate 

intervals are within two standard errors of 0.95. Finally, we see that the constraint,  p > -1, is 

violated by the approximate intervals for 20n .  

  

The simple bootstrap confidence intervals discussed here can, no doubt, be improved upon by 

considering a variety of refinements to their construction, including those suggested in DiCiccio 

and Efron (1996) and the associated published comments. However, we do not pursue this here. 
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Table 2: 95% Confidence Intervals for p 

  

 

n         Bootstrap                     Normal Approximation Using )ˆ(
~

pV  

          

  cL  cU  cL  cU
  CP        (s.e.)  

 

10  -0.800            21.436  -1.982  3.236  0.777 (0.059) 

20  -0.515  4.769  -1.174  2.421  0.882 (0.021) 

30  -0.436  3.622  -0.954  2.142  0.898 (0.015) 

40  -0.306  3.059  -0.724  2.063  0.912 (0.012)  

50  -0.270  2.719  -0.632  1.915  0.917 (0.011) 

100                    -0.055  1.883  -0.251  1.547  0.935 (0.008) 

500                     0.283  1.111   0.239  1.052  0.947 (0.007)  

1000   0.384  0.968   0.362  0.939  0.948 (0.007) 

5000   0.521  0.781   0.517  0.774  0.950 (0.007)  

10000   0.559  0.743   0.557  0.740  0.950 (0.007)  

15000   0.575  0.725   0.574  0.723  0.950 (0.007) 

  

 

 

6. Applications  

 

We consider two simple empirical applications to illustrate the various results discussed above.  

The first application compares both the point and interval estimates of a dummy variable’s 

percentage impact when these estimates are calculated in two ways: first, by naïvely interpreting 

the coefficient in question as if it were associated with a continuous regressor; and second, using 

the appropriate (and widely recommended) p̂100 , together with a bootstrap confidence interval. 

The second application goes beyond the simple interpretation of the results of a semi-logarithmic 

model with dummy variables, and shows how to construct an appropriate hedonic price index, 

together with confidence intervals for each period’s index value that take account of the non-

standard density for p̂  discussed in section 3. The effects of incorrectly using a normal 

approximation are also illustrated. 
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6.1 Wage Determination Equation 

 

Our first example involves the estimation of a simple wage determination equation. The data are 

from the “CPS78” data-set provided by Berndt (1991). This data-set relates to 550 randomly 

chosen employed people from the May 1978 current population survey, conducted by the U.S. 

Department of Commerce. In particular, we focus on the sub-sample of 36 observations relating 

to Hispanic workers. The following regression is estimated by OLS: 

 

,

)(

654

321
2

321




FEcSERVcSALESc

PROFcMANAGcUNIONcEXbEXbEDbaWAGEln
       (23) 

 

where WAGE is average hourly earnings; ED is the number of years of education; and EX is the 

number of years of labour market experience. The various zero-one dummy variables are: UNION 

(if working in a union job); MANAG (if occupation is managerial/administrative); PROF (if 

occupation is professional/technical); SALES (if occupation is sales worker); SERV (if occupation 

is service worker); and FE (if worker is female). 

 

The regression results, obtained using EViews 7.1 (Quantitative Micro Software, 2010), appear in 

Table 3. The estimated coefficients have the anticipated signs and all of the regressors are 

statistically significant at the 5% level. The various diagnostic tests support the model 

specification. Importantly, the Jarque-Bera test supports the assumption that the errors in (23) are 

normally distributed, as required for our analysis. 

 

Table 4 reports estimated percentage impacts implied by the various dummy variables in the 

regression. These have been calculated in two ways. First, we provide naïve estimates, based on 

the incorrect (but frequently used) assumption that they are simply jĉ100 , where jĉ  is the OLS 

estimate of the jth dummy variable coefficient. Second, we report results based on the almost 

unbiased estimator, jp̂100 . In each case, 95% confidence intervals are presented. The intervals 

based on the naïve estimates are constructed using the standard errors reported in Table 3, 

together with the Student-t critical values. The intervals based on the (almost) unbiased estimates 

of the percentage impacts are bootstrapped, using 999 bootstrap samples. 
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Table 3: (Log-)Wage Determination Equations 

(Hispanic Workers) 

 

 

Const.   0.8342  (5.00) [0.00] 

ED   0.0369  (2.69) [0.01] 

EX   0.0267  (3.05) [0.00] 

EX2              -0.0004  (-2.28) [0.02] 

UNION   0.4551  (3.89) [0.00] 

MANAG  0.3811  (2.89) [0.00] 

PROF   0.4732  (4.93) [0.00] 

SALES              -0.4276  (-4.43) [0.00] 

SERV              -0.1512  (-1.82) [0.04] 

FE              -0.2791  (-3.66) [0.00] 

 

n   36 

2R     0.6388      

J-B  {p}   4.2747   {0.12}  

RESET {p}  0.7263   {0.55} 

BPG {p}  8.3423   {0.50} 

White {p}  7.1866   {0.62} 

 

Note: t-values appear in parentheses. These are based on White’s heteroskedasticity-consistent standard 

errors. One-sided p-values appear in brackets. J-B denotes the Jarque-Bera test for normality of the errors; 

RESET is Ramsey’s specification test (using second, third and fourth powers of the predicted values); BPG 

and White are respectively the Breusch-Pagan-Godfrey and White nR2 tests for homoskedasticity of the 

errors. 
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Table 4: Estimated Percentage Impacts of Dummy Variables  

 

         Dummy Variable                    Naïve  ( jĉ100 )   Almost Unbiased  ( jp̂100 )  

 

 

 UNION    45.51   56.56 

          [21.51     69.50]      [28.52      91.81] 

MANAG   38.11   45.12 

          [11.01     65.20]      [-20.64   142.74] 

 PROF    47.32   59.79 

          [27.60     67.03]      [18.15    112.03] 

 SALES    -42.76   -35.09 

          [-62.60   -22.92]      [-55.51     -7.45] 

 SERV    -15.12   -14.33 

          [-32.19      1.95]      [-29.12      4.32] 

FE    -27.91   -24.57 

         [-43.57   -12.25]      [-36.06   -11.28] 

 

Note: 95% confidence intervals appear in brackets. In the case of the almost unbiased percentage impacts, 

the confidence intervals are based on a bootstrap simulation. 

 

 

As expected from Table 1 of Halverson and Palmquist (1980), the percentage impacts in Table 4 

are always algebraically larger when estimated appropriately than when estimated naïvely. These 

differences can be substantial – for example, in the case of the PROF dummy variable the naïve 

estimator understates the impact by 12.5 percentage points. In addition, the bootstrap confidence 

intervals based on  jp̂100  are wider than those based on jĉ100  in four of the six cases in Table 

4. In the case of the MANAG dummy variable the respective interval widths are 163.4 and 54.2 

percentage points. For the PROF dummy variable the corresponding widths are 93.9 and 39.4 

percentage points. Except for the SERV and FE dummy variables, the naïve approach results in 

confidence intervals that are misleadingly short. 
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6.2 Hedonic Price Index for Disk Drives 

 

As a second example, we consider regressions for computing hedonic price indices for computer 

disk drives, as proposed by Cole et al. (1986). Their (corrected) data are provided by Berndt 

(1991), and comprise a total of 91 observations over the years 1972 to 1984, for the U.S.. The 

hedonic price regression is of the form: 

 

  


84

73
21 )()()(

j
jj DcCapacitylnbSpeedlnbaPriceln  ,       (24) 

 

where Price is the list price of the disk drive; Speed is the reciprocal of the sum of average seek 

time plus average rotation delay plus transfer rate; and Capacity is the disk capacity in 

megabytes; and the dummy variables, Dj, are for the marketing years, 1973 to 1984. Some basic 

OLS results, obtained using EViews 7.1, appear in Table 5. The associated hedonic price indices 

are presented in Table 6, with 95% confidence intervals. 

 

Two sample periods are considered – the full sample of 91 observations, and a sub-sample of 30 

observations. In each case, the Jarque-Bera test again supports the assumption that the errors in 

(24) are normally distributed, as required for our various analytic results, and the RESET test 

suggests that the functional forms of the regressions are well specified. Although there is some 

evidence that the errors are heteroskedastic, we have compensated for this by reporting Newey-

West consistent standard errors. Two 95% confidence intervals are given for the price indices in 

each year in Table 6. The end-points B
Lc  and B

Uc  relate to the bootstrap percentile intervals, based 

on 999 bootstrap samples, for price index values based on p̂ . The end-points for the approximate 

confidence intervals, obtained using )ˆ(
~

pV  and a normal approximation for the sampling 

distribution of p̂ , are denoted A
Lc  and A

Uc .  
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Table 5: Hedonic Price Regressions 

  

 

          1972 – 1984     1973 – 1976      

          

Const.   9.4283  (9.62) [0.00]   9.6653  (7.46) [0.00] 

ln(Speed)  0.3909  (2.15) [0.02]   0.5251  (2.04) [0.03] 

ln(Capacity)  0.4588  (5.36) [0.00]   0.5083  (4.35) [0.00] 

D73   0.0160  (0.16) [0.44]      

D74   -0.2177 (-1.35) [0.09]   -0.2441 (-1.84) [0.04] 

D75   0.3092 (-2.20) [0.02]   -0.3352 (-2.80) [0.00] 

D76   -0.4173 (-3.06) [0.00]   -0.4793 (-3.79) [0.00] 

D77   -0.4167 (-3.02) [0.00]  

D78   -0.5740 (-4.05) [0.00]  

D79   -0.7689 (-5.64) [0.00]  

D80   -0.9602 (-6.52) [0.00]  

D81   -0.9670 (-6.25) [0.00]  

D82   -0.9537 (-6.14) [0.00]  

D83   -1.1017 (-5.76) [0.00]  

D84   -1.1812 (-5.99) [0.00]  

 

n   91     30 

2R     0.8086     0.6592 

J-B  {p}   1.8736 {0.39}    1.3257 {0.52} 

RESET {p}  0.9118 {0.41}    0.6429 {0.54} 

BPG {p}            29.6478 {0.01}               14.9165 {0.01}  

White {p}            32.2878 {0.00}               17.6305 {0.22} 

 

Note: t-values appear in parentheses. These are based on Newey-West HAC standard errors. One-sided p-

values appear in brackets. J-B denotes the Jarque-Bera test for normality of the errors. RESET is Ramsey’s 

specification test (using second and third powers of the predicted values); BPG and White are respectively 

the Breusch-Pagan-Godfrey and White nR2 tests for homoskedasticity of the errors. 
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Table 6: Hedonic Price Indices for Disk Drives 

(Base = 100) 

 

          1972 – 1984 (n = 91)         1973 – 1976  (n = 30)  

  ( B
Lc        Price Index       B

Uc )   ( B
Lc          Price Index       B

Uc ) 

  [ A
Lc             A

Uc ]               [ A
Lc              A

Uc ] 

   

1972              100.000  

1973      (79.800        101.092     125.863)        1 00.000 

  [81.139     121.050] 

1974  (63.489         79.404  101.005)  (57.220        77.658 103.183)   

 [54.554      104.255]  [57.584      97.732] 

1975 (58.648          72.679    90.565)   (52.239        71.011  95.308)   

 [52.768        92.590]  [54.430       87.592] 

1976  (52.384         65.270     81.111)  (46.710        61.428  80.577)   

 [47.906          82.635]  [46.262       76.594] 

1977  (51.543         65.298    83.026) 

 [47.687      82.909] 

1978 (39.134          55.762    76.434) 

 [40.348      71.176] 

1979 (33.591          45.925    63.474)  

 [33.721        58.130] 

1980 (27.082          37.870    52.892) 

 [26.996      48.744] 

1981 (26.653          37.569    51.454)   

 [26.249       48.890] 

1982 (27.049          38.071    52.725) 

 [26.550        49.592] 

1983 (23.167          32.628    46.585) 

 [20.515        44.741] 

1984 (20.535          30.101    44.329) 

 [18.582       41.619] 
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First, consider the results in Table 6 for the period 1973 to 1976. All of the approximate 

confidence intervals are shorter (and misleadingly “more informative”) than those computed 

using the bootstrap to mimic the true sampling distribution of p̂ . For 1975, for example, the 

approximate interval is of length 33.2, while the appropriate interval has length 43.1. The results 

for the period 1972 to 1984 exhibit the same phenomenon in seven of the twelve years. These 

results also demonstrate another unsettling feature of the approximate intervals. Consider the 

values of the price index in 1973 and 1974. The appropriate 95% confidence interval for 1974, 

namely (63.489 , 101.005), does not (quite) cover the point estimate of the index in 1973, namely 

101.092. This suggests that the measured fall in the price index from 101.092 to 79.404 is 

statistically significant at the 5% level. We reach the same conclusion by comparing the 

appropriate confidence interval for 1973 with the point estimate of the index in 1974. In contrast, 

we come to exactly the opposite conclusion if we make such comparisons using the approximate 

confidence interval for 1974 and the point estimate for the index in 1973: the notional 21.45% 

drop in prices from 1973 to 1974 is not statistically different from zero.  

 

7. Conclusions 

 

The correct interpretation of estimated coefficients of dummy variables in a semi-logarithmic 

regression model has been discussed extensively in the literature. However, incorrect 

interpretations are easy to find in empirical studies. We have explored this issue by extending the 

established results in several respects. First, we have derived the exact finite-sample distribution 

for Kennedy’s (1981) widely used (almost) unbiased estimator of the percentage impact of such a 

dummy variable. This is found to be positively skewed for small samples, and non-normal even 

for quite large sample sizes. Second, we have demonstrated the effectiveness of constructing 

bootstrap confidence intervals for the percentage impact of interest, based on the correct 

underlying distribution. Together, these contributions fill a gap in the known results for the 

sampling properties of the correctly estimated percentage impact. Finally, two empirical 

examples illustrate that with modest sample sizes, very misleading results can be obtained if the 

dummy variables’ coefficients are not interpreted correctly; or if the non-standard distribution of 

the implied percentage changes is ignored, and a normal approximation is blithely used instead. 
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