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Abstract 

We show that the full asymptotic null distribution for Watson’s 2
NU  statistic, modified for discrete 

data, can be computed simply and exactly by standard methods. Previous approximate quantiles for 
the uniform multinomial case are found to be accurate. More extensive quantiles are presented for 
this distribution, as well as for the beta-binomial distribution and for the distributions associated 
with “Benford’s Laws”. The latter distributions are for the first one, two, or three significant digits in 
a sequence of “naturally occurring” numbers. A simulation experiment compares the power of the 

modified 2
NU  test with that of Kuiper’s VN  test. In addition, four illustrative empirical applications 

are provided to illustrate the usefulness of the 2
NU  test. 

(This paper supercedes EWP0607.) 
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1. INTRODUCTION 

 

The construction of goodness-of-fit tests when the data are distributed on the circle (or more 

generally the sphere) is an important statistical problem. An excellent discussion is provided, for 

example, by Mardia and Jupp (2000). Among the tests that have been proposed for continuous data 

are those based on Kuiper’s (1959) VN  statistic and Watson’s (1961) 2
NU  statistic. These tests are of 

the Kolmogorov-Smirnov type, being based on the empirical distribution function, and Castro-Kuriss 

(2011) provides a concise and recent overview of such tests. Goodness-of-fit tests on the circle in the 

case of discrete data are also of considerable practical importance, as we demonstrate with the 

examples provided in this paper. However, this case has received far less attention in the literature. 

The complication is that although Kolmogorov-Smirnov statistics are distribution-free in the 

continuous case, this is generally not the case when the data are discrete (Conover, 1972). In the 

latter case, modifications are needed. 

 

We will be concerned with testing the null hypothesis, H0: “The data follow a discrete circular 

distribution, F, defined by the probabilities n
iip 1}{  ”, against the alternative hypothesis, H1: “H0 is not 

true”. Suppose that we have a sample of N observations, and let n
iir 1}{  denote the sample frequencies, 

such that Nr
n

i
i 

1

. For this general problem, Freedman (1981) proposes a modified version of 

Watson’s 2
NU  statistic for use with discrete data. He provides Monte Carlo evidence that this test 

out-performs Kuiper’s (1962) modified test for the discrete case, when testing the null of multinomial 

uniform against the alternative of a sine-curve. Freedman’s test statistic is: 
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)/(   ;   j = 1, 2, …., n. 

 

He shows that the asymptotic null distribution of the statistic in (1) is a weighted sum of (n - 1) 

independent chi-squared variates, each with one degree of freedom, and with weights which are the 

eigenvalues of the matrix whose (i, j)th element is 
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Freedman expresses the first four moments of the asymptotic distribution of the test statistic under H0 

as functions of these eigenvalues, and uses these moments to approximate the quantiles of the 

asymptotic distribution by fitting Pearson curves. He confirms the quality of this approximation by 

Monte Carlo methods, just for the case where the population distribution is uniform multinomial.  

 

In fact, however, the complete asymptotic null distribution of 2*
NU can be obtained directly and 

without any such approximations by using standard computational methods. Specifically, we can use 

those suggested by Imhof (1961), Davies (1973, 1980) and others, to invert the characteristic 

function for statistics which are weighted sums of chi-squared variates. There is no need to resort to 

approximations, curve fitting or simulation methods. 

 

In this paper we first use this information to verify and extend Freedman’s quantile calculations for 

the case of uniform discrete data. Then we use Davies’ algorithm to compute the exact quantiles of 

the asymptotic distributions of 2*
NU  when the data follow “Benford’s Laws” for the first, second and 

third significant digits of a string of numbers. The use of these quantiles is then illustrated through 

two examples, one of which demonstrates that correctly allowing for the discrete nature of the data 

can reverse the (false) conclusion that is reached if the null hypothesis is incorrectly tested using a 

test that is designed for the situation where the data are continuous. 

 

2. ASYMPTOTIC DISTRIBUTIONS 

 

One of the important advantages of Davies’ algorithm, in particular, is its numerical accuracy. Both 

FORTRAN and C++ code for this algorithm are freely available from Davies (2011). In what follows 

we use Davies’ double-precision FORTRAN code, Qf.for. The integration error bound and maximum 

number of integration terms for the inversion of the characteristic function can be specified by the 

user, and these were set to 10-6 and 103 respectively. The calculations were undertaken on a PC with 

an Intel Pentium 3.00 GHz processor, running Windows XP Pro. 

 

2.1 DISCRETE UNIFORM DISTRIBUTION 

Figure 1 shows the asymptotic distribution function of 2*
NU  for the uniform discrete model under H0, 

for selected values of n. Table 1 provides quantiles of this distribution for a wider range of n, and 
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compares these with Freeman’s approximate quantiles as appropriate. The case of n = 12 is of 

interest when testing for seasonal incidence with monthly data. Freedman’s Pearson curves provide 

slightly more (less) accurate upper (lower) quantiles than those obtained from Monte Carlo 

simulation, when each are compared with our exact results.  

 

2.2 BENFORD’S LAW(S) 

As a third example, consider the discrete distribution usually referred to as “Benford’s Law”. 

Benford (1938) re-discovered Newcomb’s (1881) observation that the first significant digit (d1) of 

certain naturally occurring numbers follows the distribution given by 

 

)]/1(1[log]Pr[ 101 iidpi   ; i = 1, 2, …., 9.  (2) 

 

The “circularity” of the d1 values can be illustrated by considering the numbers 0.09 and 0.10. The 

first significant digits (9 and 1) are as “distant” as possible, yet the two numbers are numerically very 

close. Although we use base 10 for the logarithms in (2), and in equations (3) to (6) below, any other 

consistent choice of base can be made. Various mathematical justifications for “Benford’s Law” have 

been provided by several authors, including Pinkham (1961), Cohen (1976) and Hill (1995a, b, c, 

1997, 1998); and Balanzario and Sánchez-Ortiz (2010) provide sufficient conditions for Benford’s 

Law to hold. These conditions are very general. 

 

The extensive bibliography by Hürlimann (2006) reflects the numerous applications of this 

distribution in many disciplines. Some examples include the auditing of financial data (e.g., Drake 

and Nigrini, 2000; Geyer and Williamson, 2004; Durtschi et al., 2004); examining the quality of 

survey data (Judge and Schechter, 2009); the analysis hydrological records (e.g., Nigrini and Miller, 

2007); image processing (e.g., Jolin, 2001; Acebo and Sbert, 2005); the α – decay half-lives of nuclei 

(Ni and Ren, 2008); testing for collusion and “shilling” in eBay auctions (Giles, 2007); and testing 

for the presence of psychological barriers in financial markets and auctions (e.g., De Ceuster et al., 

1998; Lu and Giles, 2010). In short, Benford’s Law is very pervasive, and frequently encountered. 

For these reasons, reliable goodness-of-fit tests of this null hypothesis are of considerable interest. 

 

Very recently Shao and Ma (2010) have linked Benford’s Law to the Fermi-Dirac, Bose-Einstein and 

Boltzmann-Gibbs distributions that are of fundamental importance in statistical physics. Indeed, they 

speculate: “Thus Benford’s law seems to present a general pattern for physical statistics and might be 

even more fundamental and profound in nature.” (Shao and Ma, 2010, p.3109). 
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Corresponding Benford-type distributions for the higher-order significant digits are also well known. 

For example, the joint distributions for the first two and first three such digits (d1, d2 and d3) are 

 

)]10/(11[log],Pr[ 1021 jijdidp ji   ; i, j = 10, 11, …., 99   (3) 

and 

)]10100/(11[log],,Pr[ 10321 kjikdjdidp kji   ; i, j, k = 100, 101, …., 999.  

(4) 

Similarly, the marginal distributions for d2 and d3 are 
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respectively.  

 

In Table 2 we present quantiles for the distribution function for 2*
NU  when testing against Benford’s 

marginal distributions, (2), (5) and (6). Figure 2 depicts the corresponding distribution functions. 

 

2.2 BETA-BINOMIAL DISTRIBUTION 

The beta-binomial distribution is a discrete mixture distribution which can capture either under-

dispersion or over-dispersion in the data. It has been used in a diverse range of applications (e.g., 

Tong and Lord, 2007; Hunt et al., 2009; Pham et al., 2010). The probability mass function for a beta-

binomial random variable, Y, is: 
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where B(. , .) is the usual beta function. This distribution is very versatile for modeling as its p.m.f. 

can assume a wide range of shapes. 

 

The asymptotic distribution function for 2*
NU , under the null hypothesis that the data follow the beta-

binomial distribution, is illustrated in Figure 3 for n = 12, and various choices of the other 



 6

parameters. The quantiles for this distribution function are given in Table 3, where the values of n are 

chosen in anticipation of applications involving daily, weekly, fortnightly, monthly, or quarterly data.  

 

3. APPLICATIONS 

 

3.1 CANADIAN BIRTH MONTHS 

The numbers for the months of the year provide a simple example of discrete circular data, with n = 

12. In one sense, December is as far from the first month of the year, January, as it can be, but in 

another sense it is as close as is possible. There is a substantial demographic literature relating to 

seasonality in the birth months of children. This literature suggests various reasons for non-

uniformity, and why the seasonal pattern may vary (for sociological reasons) across countries, even 

those in the same hemisphere. Trovato and Odynak (1993) provide a useful discussion of seasonality 

in the numbers of births in Canada.  

  

Here, we test the hypothesis of uniformity in the data for Canadian live births in 2008. These data are 

from Statistics Canada (2011), and are summarized in Table 4, by Province and Territory, and for 

Canada as a whole. These locations are for the mother at the time of birth.  

 

Table 5 provides the results of testing for uniformity of the distribution of births across months, 

against the alternative of non-uniformity. When the 2*
NU  values are compared with the tabulated 

critical values for n = 12 in Table 1(b), we see that the null hypothesis of uniformity is strongly 

rejected for Canada as a whole, and for almost all of the provinces. It cannot be rejected for Prince 

Edward Island or for the Yukon or Northwest Territories, at conventional significance levels. In the 

case of Nunavut, the null hypothesis is rejected at the 10% significance level, but not at the 5% level. 

Interestingly, these four exceptional cases correspond to the jurisdictions with the smallest numbers 

of births in 2008. In addition, three of these four jurisdictions are located in the far North, and face 

climatic and cultural situations somewhat different from the rest of Canada. 

 

3.2 FIBONACCI SERIES AND FACTORIALS 

Canessa (2003) has proposed a general statistical thermodynamic theory that explains, inter alia, why 

Fibonacci sequences should obey Benford’s Law. See, also, Duncan (1969) and Washington (1981). 

However, this theory has not previously been tested empirically, so here we test the hypothesis that 

the distribution of the first digits of the first N numbers of the Fibonacci series, {1, 1, 2, 3, 5, 8, 13, 
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21, 34, 55, 89, 144, ……} follows Benford’s Law, for various choices of 000,20N . The 

alternative hypothesis is that the distribution differs from Benford’s Law. We also test the null 

hypothesis that the distribution is discrete uniform, against the alternative of non-uniformity. 

  

The Fibonacci first digits were generated using Knott’s (2010) Fibonacci number calculator. The 

values for N = 100 appear in Table 6, and the relative frequency distributions for N = 100, 500, and 

1000 are given in Table 7. For 50N , the test results in Table 8(a) indicate a clear rejection of 

uniformity (using the quantiles for n = 9 in Table 1 (b)) and an equally clear non-rejection of 

Benford’s first-digit Law (using the quantiles in Table 2).   

 

Sarkar (1973) demonstrates that the first digits of factorials and binomial coefficients appear to 

follow Benford’s Law. However, he does not undertake any formal goodness-of-fit testing. The first 

digits of the first 100 factorials are given in Table 6, and the relative frequency distributions for N = 

50, 100, and 170 appear in Table 7. The largest factorial that can be stored in computer memory is 

170!. The results in Table 8(b), again using the quantiles for n = 9 from Table 1(b) and Table 2, show 

a strong rejection of uniformity in each case, and failure to reject Benford’s distribution at 

conventional significance levels, for N > 50. 

 

Given the implications of the theoretical results of Duncan (1969), Washington (1981), Canesa 

(2003), and Sarkar (1973), these empirical results for the Fibonacci and factorial data can be 

interpreted as speaking favourably to the quality of Freedman’s test. 

 

3.3 AUCTION PRICE DATA 

Price data exhibit circularity. Consider two prices such as $99.99 and $100. Their first significant 

digits are as far apart as is possible, yet the associated prices are extremely close. Giles (2007) 

considered all of the 1,161 successful auctions for tickets for professional football games in the 

“event tickets” category on eBay for the period 25 November to 3 December, 2004, excluding 

auctions ending with the “Buy-it-Now” option, and all Dutch auctions. The winning bids should 

satisfy Benford’s Law if they are “naturally occurring” numbers, as should be the case if there were 

no collusion among bidders and no “shilling” by sellers in this market.  

 

Table 6 reports the first, second, and third digits for the first 100 observations in Giles’s sample; and 

Table 7 provides the relative frequency distributions for the first N = 100, 500 and 1000 sample 

values. In Table 9 we see the results of testing these first, second and third digits using both the 
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uniform multinomial and Benford hypotheses. Uniformity is again strongly rejected (against non-

uniformity) for the first and third digits, and for the second digit in samples of size 500 or greater. At 

the 5% significance level, Benford’s Law for the third digit is unambiguously rejected (against the 

non-Benford alternative), and the first digit and second digit laws are also rejected for N > 100. In 

contrast, Giles (2007) (wrongly) applied Kuiper’s (1959) VN  test for continuous data to the 1,161 

first-digits and marginally failed to reject Benford’s Law. (He did not consider tests for the second 

and third digits, as we do here.) This comparison of our results with his illustrates the importance of 

applying a test that takes account of the discrete nature of the data. 

 

3.4 ALCOHOL CONSUMPTION DATA 

Our final application fits the beta-binomial distribution to data for the number of days in a month on 

which alcohol was consumed. We use a sample of 10,327 responses to the question “On how many 

of the past thirty days did you drink alcoholic beverages”, in the Canadian Addiction Survey (Adlaf 

et al., 2005). In this application, the data are discrete, with n = 30, but they are not circular in nature. 

However, it is well known that Kuiper’s test for goodness of fit involving continuous data has good 

power properties even when the data are not circular, especially if the lack of fit arises from 

departures in variance.  

 

Fitting the beta-binomial distribution to the data, using R (2008) code with the VGAM package (Yee, 

2009), the maximum likelihood estimates of the parameters are 4218.0ˆ  and 7021.1ˆ  . The 

goodness-of-fit of this distribution is compared with those of the binomial, negative binomial, and 

Poisson distributions in Figure 4. We see that….. However, testing H0: beta-binomial, against the 

alternative hypothesis that the distribution is not beta-binomial, we have a test statistic of 2*
NU = 

25.0148. For these values of n and the parameters, the 95th and 99th quantiles of the asymptotic 

distribution are 0.18445 and 0.26563 respectively, so we strongly reject the hypothesis that the data 

come from a beta-binomial distribution in this case. 

 

4. POWER CONSIDERATIONS 

 

Freedman (1981) was concerned with testing uniformity against “seasonal” fluctuations in discrete 

data. He provided a limited comparison of the powers of the 2*
NU  test, Kuiper’s VN  test, and 

Edwards’ (1961) test against both sinusoidal and non-sinusoidal alternatives. The 2*
NU  test out-

performed the VN  test, and also out-performed Edwards’ test in the non-sinusoidal case. 
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We have studied the power of the 2*
NU  test for the two cases where the null hypothesis is the beta-

binomial distribution, and where it is the first-digit distribution under Benford’s law. The alternative 

hypothesis is that the data are (discrete) uniform on [0, 4] in the former case; and (discrete) uniform 

on [1, 9] in the latter case. The power of the  2*
NU  test is compared with that of Kuiper’s VN  test, 

even though the latter is intended for continuous distributions. Edwards’ test is not considered as it is 

specific to alternatives representing “seasonality”. Our results appear in Table 10. For the beta-

binomial null hypotheses that are considered, the 2*
NU  test out-performs the VN  test and 100%  

power is achieved for (approximately) N   100 against this particular alternative. The relative 

performance of the 2*
NU  is less satisfactory for very small samples in Table 10 (b), where the null 

hypothesis is that that the data are distributed according to Benford’s first-digit law. However, both 

tests attain 100%  power for (approximately) N   150 against the alternative hypothesis of a discrete 

uniform distribution. Given that this is the most natural alternative to this null hypothesis, and that 

the tests are only asymptotically valid, this is actually a very satisfactory result. 

 

5. CONCLUSIONS 

 

When testing for goodness-of-fit, it is important to distinguish between continuous and discrete data, 

and also to use an appropriate test if the data are distributed on the circle, as is sometimes the case. 

Often, one or both of these characteristics of the problem are ignored, and inappropriate tests are 

used. We have shown that in fact it is a simple computational matter to test for goodness-of-fit 

properly when the data are circular and discrete. Freedman’s (1981) test can be applied without any 

need to resort to approximations, contrary to the existing results in the literature. The test is 

asymptotically exact and is simple to apply using the accurate critical values derived in this paper for 

some interesting discrete distributions – uniform, beta-binomial, and those associated with 

“Benford’s Laws”. Our computational method can also be used to generate exact critical values for 

other discrete distributions that may be of interest.  

 

A small Monte Carlo study we demonstrate, for the first time, that when the null hypothesis is that 

the data are either beta-binomially distributed, or distributed according to Benford’s first law, 

Freedman’s test has excellent power against uniform alternatives. We have applied our results to four 

practical testing problems to show the utility and versatility of this test that takes account of both the 
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circularity and discrete nature of certain data. In summary, we recommend the use of Freedman’s 

2*
NU  test for goodness-of-fit testing with discrete, possibly circular, data. 
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 Table 1.  Quantiles of the asymptotic null distribution function of 2*
NU . H0: Uniform   

     discrete distribution 

 

n    (a) Left Tail Quantiles         

 1%  2.5%  5%  10%  25%   

3 0.000745 0.001876 0.003800 0.007805 0.021310   

4 0.002852 0.005365 0.008763 0.014592 0.030492   

5 0.005346 0.008749 0.012894 0.019432 0.035733   

6 0.007624 0.011513 0.015993 0.022756 0.038872   

7 0.009535 0.013673 0.018285 0.025071 0.040856   

8 0.011095 0.015350 0.019995 0.026724 0.042171   

9 0.012361 0.016660 0.021290 0.027933 0.043077   

10 0.013390 0.017694 0.022287 0.028840 0.043724   

15 0.016397 0.020557 0.024928 0.031122 0.045228   

20 0.017715 0.021733 0.025956 0.031961 0.045735   

26 0.018483 0.022393 0.026518 0.032407 0.045995   

30 0.018774 0.022639 0.026724 0.032568 0.046088   

40 0.019173 0.022970 0.026999 0.032781 0.046209  

50 0.019362 0.023130 0.027127 0.032880 0.046264   

52 0.019388 0.023147 0.027144 0.032893 0.046272   

100 0.019620 0.023336 0.027299 0.033011 0.046338   

 

12 0.014927 0.019187 0.023687 0.030072 0.044559   

 (0.0195) (0.0218) (0.0248) (0.0299) (0.0435)   

 [0.015]  [0.019]  [0.024]  [0.030]  [0.045]   
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Table 1.  (continued) 

 

n    (b) Right Tail Quantiles         

 75%  90%  95%  97.5%  99%  

3 0.102692 0.170572 0.221924 0.273277 0.341164 

4 0.106412 0.164936 0.208604 0.252081 0.309435 

5 0.106985 0.160903 0.201195 0.241375 0.294438 

6 0.106860 0.158332 0.196920 0.235448 0.286360 

7 0.106612 0.156670 0.194286 0.231866 0.281535 

8 0.106378 0.155554 0.192561 0.229543 0.278426 

9 0.106185 0.154775 0.191373 0.227953 0.276306 

10 0.106031 0.154211 0.190521 0.226818 0.274706 

15 0.105620 0.152858 0.188500 0.224135 0.271240 

20 0.105461 0.152379 0.187792 0.223198 0.270002 

26 0.105374 0.152126 0.187419 0.222707 0.269335 

30 0.105344 0.152033 0.187285 0.222531 0.269121 

40 0.105301 0.151914 0.187108 0.222297 0.268815 

50 0.105281 0.151859 0.187026 0.222190 0.268670 

52 0.105279 0.151851 0.187016 0.222174 0.268650 

100 0.105256 0.151785 0.186917 0.222044 0.268481  

 

12 0.105813 0.153470 0.189410 0.225341 0.272836 

 (0.106)  (0.154)  (0.189)  (0.225)  (0.272)  

 [0.107]  [0.155]  [0.191]  [0.224]  [0.264] 

 

Note: For n = 12, figures in parentheses (square brackets) are Freedman’s (1981) Pearson curve 

 (Monte Carlo) estimates, each to the number of decimal places he reports. The entries for n = 26 and n 

 = 52 are to allow for seasonal testing with fortnightly and weekly data. 
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Table 2. Quantiles of the asymptotic null distribution function of 2*
NU . H0: Benford’s marginal 

distributions for first, second and third digits 

     

 

Quantiles First Digit  Second Digit  Third Digit 

(%) 

1  0.01024   0.01332   0.01339 

2.5  0.01392   0.01760   0.01769 

5  0.01794   0.02218   0.02229  

10  0.02379   0.02871   0.02884 

25  0.03744   0.04356   0.04372 

.  .   .   .   

.  .   .   . 

75  0.09651   0.10576   0.10603 

90  0.14313   0.15388   0.15421 

95  0.17878   0.19016   0.19052 

97.5  0.21485   0.22643   0.22681 

99  0.26319   0.27441   0.27479 
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Table 3.  Selected quantiles of the asymptotic null distribution function of 2*
NU . H0: Beta-binomial 

distribution 

(a) Left Tail Quantiles 

α β  1%  2.5%  5%  10%  25%  

 

n = 4 

0.20 0.25  0.00151  0.00285  0.00467  0.00782  0.01660 

0.70 2.00  0.00225  0.00424  0.00695  0.01165  0.02470 

2.00 2.00  0.00284              0.00534  0.00871  0.01451  0.03034 

600 400  0.00257  0.00485  0.00793  0.01323  0.02784 

n = 7 

0.20 0.25  0.00520  0.00751  0.01036  0.01407  0.02363 

0.70 2.00  0.00738  0.01071  0.01448  0.02017  0.03389 

2.00 2.00  0.00944  0.01354  0.01811  0.02485  0.04055 

600 400  0.00648  0.00953  0.01306  0.01844  0.03161  

n = 12 

0.20 0.25  0.00847  0.01103  0.01379  0.01779  0.02721 

0.70 2.00  0.01171  0.01531  0.01919  0.02480  0.03783 

2.00 2.00  0.00847  0.01103  0.01380  0.01779  0.02721 

600 400  0.00784  0.01067  0.01379  0.01837  0.02915 

 n = 26 

0.20 0.25  0.01117  0.01371  0.01642  0.02034  0.02957 

0.70 2.00  0.01505  0.01847  0.02210  0.02731  0.03944 

2.00 2.00  0.01767  0.02145  0.02543  0.03111  0.04422 

600 400  0.00747  0.00958  0.01185  0.01511  0.02272 

n = 52 

0.20 0.25  0.01222  0.01471  0.01739  0.02127  0.03042 

0.70 2.00  0.01606  0.01932  0.02279  0.02782  0.03961 

2.00 2.00  0.01834  0.02191  0.02571  0.03118  0.04392  

600 400  0.00622  0.00774  0.00936  0.01170  0.01721 
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Table 3. (continued)  

 

(b) Right Tail Quantiles 

α β  75%  90%  95%  97.5%  99%  

 

n = 4 

0.20 0.25  0.06256  0.10224  0.13381  0.16655  0.21126 

0.70 2.00  0.09183  0.14783  0.19139  0.23595  0.29625 

2.00 2.00  0.10610  0.16473  0.20861  0.25242  0.31038 

600 400  0.09986  0.15717  0.20057  0.24417  0.30218 

n = 7 

0.20 0.25  0.06793  0.10528  0.13487  0.16551  0.20730 

0.70 2.00  0.09519  0.14409  0.18169  0.21993  0.27141 

2.00 2.00  0.10607  0.15597  0.19347  0.23093  0.28044 

600 400  0.08997  0.13548  0.17010  0.20507  0.25187 

n = 12 

0.20 0.25  0.07038  0.10664  0.13527  0.16485  0.20515 

0.70 2.00  0.09486  0.14055  0.17574  0.21150  0.25962 

2.00 2.00  0.10395  0.15085  0.18626  0.22169  0.26859 

600 400  0.07628  0.11419  0.14367  0.17387  0.21477 

 n = 26 

0.20 0.25  0.07198  0.10764  0.13567  0.16457  0.20387 

0.70 2.00  0.09380  0.13785  0.17189  0.20652  0.25315 

2.00 2.00  0.10163  0.14707  0.18153  0.21611  0.26203 

600 400  0.05726  0.08655  0.10985  0.13400  0.16698 

n = 52 

0.20 0.25  0.07270  0.10810  0.13592  0.16456  0.20351  

0.70 2.00  0.09313  0.13681  0.17056  0.20494  0.25125 

2.00 2.00  0.10044  0.14545  0.17966  0.21406  0.25982 

600 400  0.04326  0.06605  0.08440  0.10402  0.12964  
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Table 4.  Canadian live births, 2008: relative frequency distribution (%) 

 

Month: 1 2 3 4 5 6 7 8 9 10 11 12 

 

NL 7.4 7.4 8.4 7.8 8.8 7.8 8.8 9.7 9.6 8.9 7.8 7.6 

PEI 7.3 9.0 9.0 7.6 8.6 8.2 9.6 7.6 8.3 8.4 8.7 7.6 

NS 8.3 8.1 8.0 8.1 8.5 8.4 9.5 8.5 8.9 8.5 7.6 7.5 

NB 8.0 7.7 8.3 7.7 8.4 8.5 8.7 9.3 9.0 8.5 7.9 7.9 

QC 7.7 7.6 8.2 8.2 8.5 8.2 9.2 8.7 9.0 8.9 7.9 7.9 

ON 8.2 7.8 8.2 8.4 8.6 8.4 8.8 8.6 8.9 8.6 7.9 7.8 

MB 8.2 7.6 7.9 8.1 8.7 8.3 9.0 8.8 8.9 9.0 7.5 8.0 

SK 8.2 8.0 8.3 8.2 8.8 8.4 8.7 8.3 9.5 8.3 7.4 7.9 

AB 8.0 7.6 8.2 8.4 8.6 8.7 8.9 8.9 8.6 8.4 7.6 8.1 

BC 8.0 7.6 8.1 8.2 8.8 8.4 8.9 8.7 8.9 8.4 7.8 8.2 

YT 6.2 7.8 9.1 6.4 10.2 6.7 5.9 9.4 10.7 9.1 8.3      10.2 

NWT 8.7 7.2 8.6 8.5 9.4 7.8 8.2 10.3 7.9 7.9 8.5 7.1 

NU 7.7 7.7 9.3 8.9 9.2 9.6 8.8 8.3 8.7 6.7 7.5 7.6 

 

CAN 8.0 7.7 8.2 8.3 8.6 8.4 8.9 8.7 8.9 8.6 7.8 7.9 

 

 

Notes: The Provincial/Territorial abbreviations are: NL = Newfoundland and Labrador; PEI = Prince 

 Edward Island; NS = Nova Scotia; NB = New Brunswick; QC = Québec; ON = Ontario; MB = 

 Manitoba; SK = Saskatchewan; AB = Alberta; BC = British Columbia; YT = Yukon Territory; NWT 

 = Northwest Territory; NU = Nunavut; CAN = Canada. 
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Table 5. Values of 2*
NU . H0: Canadian birth months follow uniform discrete distribution 

 

 

Province/Territory  N  2*
NU  

 

NL    4,898  0.771  

PEI    1,483  0.038 

NS    9,188  0.528 

NB    7,402  0.490 

QC    87,870  6.340 

ON    140,791  5.681 

MB    15,485  0.994 

SK    13,737  0.552 

AB    50,856  2.856 

BC    44,276  2.093 

YT    373  0.089 

NWT    721  0.052 

NU    805  0.168 

 

CANADA   377,886  18.146 

 

 

Note: The Provincial/Territorial abbreviations are: NL = Newfoundland and Labrador; PEI = Prince Edward 

Island; NS = Nova Scotia; NB = New Brunswick; QC = Québec; ON = Ontario; MB = Manitoba; SK = 

Saskatchewan; AB = Alberta; BC = British Columbia; YT = Yukon Territory; NWT = Northwest Territory; 

NU = Nunavut. 
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Table 6. Illustrative data: digits when N = 100 

 

 

 

Fibonacci numbers - first digits 

 

1, 1, 2, 3, 5, 8, 1, 2, 3, 5, 8, 1, 2, 3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 3, 6, 1, 

1, 2, 4, 7, 1, 1, 2, 4, 7, 1, 2, 3, 5, 8, 1, 2, 3, 5, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 4, 8, 1, 2, 3, 5, 8, 1, 2, 

3, 6, 9, 1, 2, 4, 6, 1, 1, 2, 4, 7, 1, 1, 3, 5, 8, 1, 2, 3 

 

Factorials – first digits 

 

1, 2, 6, 2, 1, 7, 5, 4, 3, 3, 3, 4, 6, 8, 1, 2, 3, 6, 1, 2, 5, 1, 2, 6, 1, 4, 1, 3, 8, 2, 8, 2, 8, 2, 1, 3, 1, 5, 2, 8, 

3, 1, 6, 2, 1, 5, 2, 1, 6, 3, 1, 8, 4, 2, 1, 7, 4, 2, 1, 8, 5, 3, 1, 1, 8, 5, 3, 2, 1, 1, 8, 6, 4, 3, 2, 1, 1, 1, 9, 

8, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9 

 

Auction prices – first digits 

 

6, 9, 5, 4, 6, 3, 1, 8, 7, 9, 3, 2, 2, 2, 1, 1, 4, 2, 1, 1, 1, 4, 1, 3, 3, 9, 3, 6, 1, 1, 7, 7, 8, 1, 1, 2, 2, 7, 7, 1, 

2, 2, 1, 1, 2, 1, 1, 4, 3, 7, 4, 2, 2, 2, 1, 2, 9, 2, 3, 1, 2, 1, 1, 1, 7, 5, 2, 2, 2, 3, 1, 9, 5, 2, 7, 4, 7, 2, 2, 1, 

5, 5, 3, 3, 5, 1, 2, 3, 1, 2, 1, 1, 1, 7, 2, 1, 1, 2, 5, 6 

 

Auction prices – second digits 

 

6, 4, 0, 5, 2, 7, 0, 1, 0, 2, 0, 3, 8, 0, 1, 1, 3, 5, 2, 4, 5, 8, 5, 0, 4, 2, 0, 3, 1, 8, 6, 8, 0, 7, 7, 9, 5, 1, 8, 9, 

9, 0, 2, 8, 2, 8, 9, 6, 8, 0, 4, 5, 4, 5, 1, 6, 6, 8, 2, 3, 0, 6, 5, 7, 1, 1, 2, 0, 7, 1, 3, 6, 1, 3, 5, 7, 6, 2, 8, 1, 

1, 0, 4, 3, 1, 0, 8, 0, 6, 0, 6, 0, 4, 6, 3, 5, 3, 0, 3, 1 

 

Auction prices – third digits 

 

0, 0, 0, 5, 0, 5, 2, 1, 1, 9, 5, 8, 0, 5, 2, 9, 5, 5, 2, 7, 7, 5, 0, 5, 0, 0, 7, 0, 7, 2, 0, 0, 0, 7, 5, 0, 5, 0, 0, 2, 

5, 2, 2, 2, 0, 2, 2, 0, 5, 0, 9, 0, 0, 6, 9, 0, 5, 5, 0, 1, 1, 2, 2, 0, 0, 0, 7, 2, 5, 0, 1, 0, 0, 7, 9, 2, 0, 2, 5, 0, 

0, 0, 2, 5, 0, 2, 0, 0, 7, 2, 2, 0, 2, 0, 2, 7, 4, 2, 0, 0 
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Table 7. Illustrative data: relative frequency distributions 

 

 

Digit     1    2    3    4    5    6    7    8    9 

 

N        Benford’s Law – first digits 

  0.301 0.176 0.125 0.097 0.080 0.067 0.058 0.051 0.046 

 

Fibonacci numbers - first digits 

100  0.300 0.180 0.130 0.090 0.080 0.060 0.050 0.070 0.040 

500  0.302 0.176 0.126 0.094 0.080 0.066 0.058 0.054 0.044 

1000  0.301 0.177 0.125 0.096 0.080 0.067 0.056 0.053 0.045 

 

Factorials – first digits 

50  0.240 0.220 0.160 0.060 0.080 0.120 0.020 0.100 0.000  

100  0.300 0.180 0.130 0.070 0.070 0.070 0.020 0.100 0.060 

170  0.306 0.182 0.124 0.070 0.076 0.059 0.029 0.082 0.071  

 

Auction prices – first digits 

100  0.300 0.250 0.110 0.060 0.070 0.040 0.100 0.020 0.050 

500  0.326 0.226 0.104 0.076 0.072 0.048 0.066 0.048 0.034 

1000  0.326 0.198 0.133 0.078 0.071 0.051 0.060 0.048 0.035 
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Table 7. (continued) 

 

 

Digit     0    1    2    3    4    5    6    7    8    9 

 

N     Benford’s Law – second digits 

  0.120 0.114 0.109 0.104 0.100 0.097 0.093 0.090 0.088 0.085 

 

Auction prices – second digits 

100  0.180 0.140 0.090 0.100 0.070 0.100 0.110 0.060 0.110 0.040 

500  0.194 0.156 0.102 0.066 0.066 0.146 0.106 0.040 0.058 0.066 

1000  0.202 0.145 0.101 0.078 0.058 0.135 0.111 0.047 0.060 0.063 

 

Benford’s Law – third digits 

  0.102 0.101 0.101 0.101 0.100 0.100 0.099 0.099 0.099 0.098 

 

Auction prices – third digits 

100  0.390 0.050 0.220 0.000 0.010 0.170 0.010 0.090 0.010 0.050 

500  0.406 0.032 0.166 0.016 0.014 0.182 0.018 0.084 0.022 0.060 

1000  0.416 0.032 0.154 0.022 0.014 0.191 0.023 0.090 0.020 0.038 
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Table 8 (a). Values of 2*
NU . H0: Fibonacci first digits follow uniform discrete distribution; or H0: 

Fibonacci first digits follow Benford’s distribution 

 

 N     2*
NU   

    H0: Uniform discrete          H0: Benford 

 50   0.42831   0.00486 

100   0.79613   0.00342 

 250   1.91658   0.00175 

 500   3.84342   0.00063 

 1000   7.71638   0.00042 

 2000   13.35437  0.00021 

 5000   38.44199  0.00012 

 10000   76.8457 3  0.00007 

20000   153.54990  0.00003 

 

(b). Values of 2*
NU . H0: Factorials first digits follow uniform discrete distribution; or H0: Factorials 

first digits follow Benford’s distribution 

 

 N     2*
NU   

    H0: Uniform discrete          H0: Benford 

50  1.16915    0.27684 

100  1.47179    0.08815 

170  1.56025    0.04822 
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Table 9.  Values of 2*
NU . H0: Football ticket price digits follow uniform discrete distribution; or H0: 

Football ticket price digits follow Benford’s distribution 

 

      2*
NU   

       Uniform discrete                Benford 

N  Digit 1  Digit 2  Digit 3  Digit 1  Digit 2  Digit 3 

 

50 0.4574  0.1242  0.3952  0.0463  0.1094  0.3883 

100 1.1306  0.0476  0.2490  0.0778  0.0195  0.2407 

250 3.3508  0.7566  2.7800  0.2673  0.5128  2.7390 

500 5.6113  1.1440  4.8389  0.2539  0.6876  4.7680 

750 8.3334  1.4935  6.9105  0.3210  0.8473  6.7987 

1000 10.6368  2.1118  9.2640  0.2919  1.2482  9.1235 

1161 11.7730  2.4803  11.1671  0.2258  1.4664  10.9962 
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Table 10.  Illustrative powers (%) of the 2*
NU  and VN  tests.  

(a) H0: Beta-binomial (n = 4) ; H1: Discrete Uniform [0, 4] 

  

N  10%    5%    1% 

2*
NU   VN   2*

NU   VN   2*
NU   VN  

 

α = 0.7;  β = 2.0 

25 78.00  52.62  78.00  33.96  41.44  18.72 

50 98.72  90.08  96.94  84.76  88.26  62.98 

75 99.78  99.18  99..68  98.34  98.32  93.94 

100 100.00  99.94  100.00  99.88  99.86  98.84 

  

α = 0.2;  β = 0.25 

 

25 78.00  47.24  78.00  43.56  61.04  27.84 

50 96.94  91.38  93.80  85.60  88.26  68.64 

75 99.68  99.30  99.28  97.94  96.58  93.70 

100 100.00  99.94  99.86  99.82  99.34  99.36 

 

(b) H0: Benford’s first-digit ; H1: Discrete Uniform [1, 9] 

  

N  10%    5%    1% 

2*
NU   VN   2*

NU   VN   2*
NU   VN  

 

 

50 68.28  84.38  50.70  75.92  17.40  52.48  

75 92.92  97.98  79.74  95.98  53.86  86.88 

100 98.62  99.74  94.78  99.42  77.70  96.92 

150 99.98  99.98  99.82  99.96  98.46  99.90 
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Figure 1: Exact Asymptotic Distribution of  Freeman's Statistic 
for the Uniform Discrete Distribution Under the Null Hypothesis
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Figure 2:  Exact Asymptotic Distributions of Freeman's Statistic 
for Benford's Distributions for First and Second Digits Under the Null Hypthesis
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Figure 3: Exact Asymptotic Distribution of Freeman's Statistic for
the Beta-Binomial Distribution With n = 12 Under the Null Hypothesis
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Figure 4: Fitted Distributions for Alcoholic Beverages Data
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