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1. Introduction 

In this paper we obtain an analytic approximation to the distribution of the half-life estimator in a 

stationary autoregressive model, and prove that this distribution has no finite integer-order 

moments. The half-life, defined as the time taken for a unit shock to dissipate by 50%, is a 

commonly-used measure of persistence in an autoregressive time-series model. Examples of this 

appear in the purchasing power parity literature in economics (e.g., Abuaf and Jorion, 1990; Glen 

1992; Cheung and Lai, 1994, Rogoff, 1996, and others). The so-called “purchasing power parity 

puzzle” refers to the surprisingly large half-life estimates that have been obtained in this literature, 

and the fact that when confidence intervals are reported they are generally so wide as to be of 

little practical use. Our results provide an explanation for these empirical phenomena. 

 

The paper is constructed as follows. Section 2 reviews some issues associated with half-life 

estimation.  In section 3 we derive the density and distribution functions for the half-life estimator 

in the AR(1) model, and explore some of its properties. These results are extended to the case of 

the AR(p) model in section 4; and some robustness issues are discussed in section 5. The final 

section discusses the implications of our results and provides suggestions for future research. 

 

2.       Estimating the half-life of adjustment 

A simple estimator of the half-life of adjustment can be based on the linear AR(1) model  

  

                                                    ttt uyy += −1α  ;    t = 0, 1, 2,K , T                                (1) 

 

with initial value y0, and tu ~ i.i.d. ),0( 2σN . The normality assumption is not needed for the 

construction of a half-life measure. It is used to establish our main results, but their robustness to 

this assumption is also discussed. The half-life for the speed of adjustment can be estimated as: 

                                               )ˆlog(/)5.0log(ˆ α=h       ,                               (2) 

where α̂  is the OLS estimator of α  in (1), namely  yyyy 1
1

11 )(ˆ −
−

−− ′′=α , and we require 

)1,0(ˆ ∈α  for the model to be dynamically stable, and for the estimated half-life to be positive. 

 

It is well known that the OLS estimator, α̂ , is negatively biased in small samples, and the 

absolute bias increases with the persistence of the series. Andrews’ (1993) median-unbiased 

estimator provides a good tool to correct the bias. Empirical studies that apply the median-
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unbiased estimator (e.g., Murray and Papell, 2002; Cashin and McDermott, 2003; Caporale et al., 

2005; Lopez et al., 2004) yield estimated half-lives that are even higher than their OLS 

counterparts, and with confidence intervals are still so wide that no strong conclusions can be 

made.  

 

Some researchers have tried to resolve these issues by replacing (1) with a nonlinear model (e.g., 

Taylor et al., 2001; Baum et al., 2001). In nonlinear models, the mean reversion speed depends on 

the size of the deviation from the long-run equilibrium level: the larger are the deviations, the 

lower are the half-life point estimates and the narrower are the confidence intervals, and vice 

versa. So, nonlinear models might seem to provide a fruitful basis for estimating half-lives. 

However, El-Gamal and Ryu (2006) find that the nonlinear Threshold Autoregression (TAR) and 

Exponential Smooth Threshold Autoregression (ESTAR) models exhibit the same type of decay 

as the AR model and in this respect add little.  

 

With the exception of the Bayesian analysis of Kilian and Zha (1999), previous studies have used 

only Monte Carlo or bootstrap simulation to investigate the distribution of the half-life estimator 

in (2). Indeed, Kim et al. (2006, pp. 3418-3419) observe: “First, it has an unknown and possibly 

intractable distribution. Second, it may not possess finite sample moments since it takes extreme 

values as α̂  approaches one.” We provide the first analytic approximations to the density and 

distribution functions for the usual half-life estimator. Based on the density function, we then 

prove that the moments of the half-life estimator do not exist, and we also extend these results to 

the general AR(p) model. This provides an explanation for the wide confidence intervals 

encountered in many empirical studies, and it also implies that these studies may be using an 

invalid measure of the half-life, as is suggested by Chortareas and Kapetanios (2004).   

 

3. Saddlepoint approximations for the distribution and density functions 

3.1 Background 

From (2), the half-life estimator is a nonlinear transformation of the OLS estimator of the 

coefficient in an AR(1) model. If we know the density function of α̂ , then we can  determine the 

density function of the half-life. Various studies (e.g., Phillips, 1978; Lieberman, 1994) have 

considered the properties of α̂  in (1). In particular, Lieberman (1994) derived a saddlepoint 

approximation (Daniels, 1954; Goustis and Casella, 1999; Huzurbazar, 1999) for the density and 

distribution functions for the OLS estimator in the AR(1) model. He expresses the OLS estimator 
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α̂  in (1) as: 
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Lieberman derives the saddlepoint approximation for the density of  α̂  as 

                                
{ }
[ ] 2

1

2
1

})ˆ{( 4

ˆ)ˆ( 
)ˆ(ˆ

21

2
1

DAtr

ARCRAtr
f

−

−
− ′

=
π

α
αα

 ,                                         (4) 

where αα αα RCCRDD )ˆ()ˆ( 21 −′== , DwIwAA ˆ2)ˆ(ˆ −==  and ŵ  satisfies 

 

                                 )ˆ( 1DAtr − =0.                                                                          (5) 

 

Then the distribution function of α̂  is obtained by integrating the density function and applying 

the Lugannani-Rice (1980) formula:  

                              )
ˆ
1

ˆ
1)(ˆ()ˆ()ˆ()ˆ(ˆ

ε
εφεαα −−Φ=<=

z
xPF ,                                 (6) 

where ( ) )ˆsgn(ˆlogˆ 2
1

wA=ε ,  [ ] 2
1 21 })ˆ{(2ˆˆ DAtrwz −= , )(xDD = ; Φ  and φ  are the standard 

normal distribution and density functions respectively, and ŵ  is defined by (5). The accuracy of 

saddlepoint approximations is well known, with recent examples being provided by Giles (2001), 

Chen and Giles (2008) and many others. 
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3.2  Density and distribution functions of the half-life estimator 

A saddlepoint approximation for the density of the half-life estimator can be derived simply from 

that for the density of α̂ , using the transformation:                                                                      

Jhfhf ]1ˆ0)ˆ(ˆ[)ˆ( <<= αα  
)1ˆ0.(Pr

))ˆ(ˆ(
<<

=
α

α Jhf   ,                                                                           (7) 

where ))ˆ(ˆ( hf α  is the density function obtained by replacing α̂  with ĥ1)5.0(  in (4); and the 

Jacobian is   2ˆ1 ˆ/2ln)5.0( hJ h= . 

 

Then C = )1ˆ0.(Pr <<α  can be calculated from (6), and the saddlepoint approximation to the 

density function for the half-life estimator is: 

                                   
{ }
[ ] 2 21

 

2
1

ˆ
2ln)5.0(

})~~{( 4

~ )~( 
)ˆ(ˆ 2

1

2
1

2
1

hCDAtr

ARCRAtr
hf

−

−− ′
=

π

αα
        ,                        (8) 

where αα RCCRhDD h ))5.0(()ˆ(~
21

ˆ
1

−′== , DwIwAA ~ˆ2)ˆ(~
−==  and ŵ  satisfies )~~( 1DAtr −  

= 0. 

Similarly, the approximation to the distribution function of the half-life estimator is: 

                                    )1ˆ0ˆ()ˆ(ˆ <<<= αxhPhF  

                                             )1ˆ0()
)ˆlog(
)5.0log(( <<<= α

α
PxP  

                                             CP x ))5.0(ˆ( 1
<= α .                                          (9) 

 

Again, (9) can be calculated easily, using (6). 

 

Figure 1 shows the saddlepoint approximation to the density function for ĥ  (from (8)) for various 

values of α , and a sample size of 30. Figure 2 shows this density of ĥ  for various sample sizes 

with α = 0.95. We see that the density function is highly skewed to the right, and it shifts to the 

right and the tails become fatter as the sample size or the value of α  increase. It is clear why 

relatively large half-life estimates have been reported frequently in the empirical literature. 

 

[Figures 1 and 2 about here] 
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Table 1: Point Estimate and Confidence Intervals of the Half-Life 

for Different α  Values and Sample Sizes 

α            T = 30              T = 50 

          Point estimate          95% Confidence   Point estimate          95% Confidence 

      (Median)    Interval       (Median)                      Interval 

          

0.6      1.445                        [0.536,      3.700]         1.409          [0.660,       2.880] 

0.7      2.120                       [0.746,      6.216]         2.051             [0.916,       4.529] 

0.8      3.550                        [1.095,    14.946]         3.379          [1.348,       8.817] 

0.9      8.372                       [1.900,           ∞]         7.762          [2.352,     41.710] 

0.97      31.786         [4.659,           ∞]       30.235          [15.045,          ∞]                       

 

Note: Both the median point estimates and the confidence intervals are calculated from (9) using 

code written for the SHAZAM econometrics package (Whistler et al., 2004).  

 

Table 1 shows the (median) point estimate and the 95% confidence interval of the half-life 

estimator when the true data process is an AR(1) model. We see that the point estimate decreases  

with the sample size, and when α  is no smaller than 0.9 the confidence interval is very wide. As 

the sample size increases, the confidence interval width decreases, but it is still quite wide.  

 

3.3 Non-existence of moments 

Further insights into the characteristics of the half-life estimator can be obtained by considering 

the moments of its distribution. Interestingly, we have the following result.  

 

Theorem 1  

Let the data follow a stationary AR(1) process: ttt uyy += −1α , with ) ,0(~ 2σNut . The half-

life estimator is defined as )ˆlog(/)5.0log(ˆ α=h , where α̂  is the least squares estimator of α , 

and )1 ,0(ˆ ∈α . Then the mean of the half-life estimator does not exist.  

 

Proof 

            hdhfhhM ˆ )ˆ( ˆ)ˆ(  
0 ∫= ∞  αα

α
ˆ )ˆ(

)ˆlog(
)5.0log(1 

0 
df∫= . 
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Let { } 2
1 

2
1 ˆ )ˆ( )ˆ(

−
− ′= ARCRAtru ααα  and [ ] 2

1 21 })ˆ{( 4)ˆ( DAtrv −= πα . Then 

          M̂ ( ĥ ) = α
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As ∞<<∞− α̂ , )ˆ(αu and )ˆ(αv  are continuous functions of α̂  on the closed interval [ ]1  ,0 . 

According to the extreme value theorem, we can assume: 

(i) when α̂ =α , )ˆ(αu  gets to its minimum value N and 0≠N . 

(ii) when α̂ =α( , )ˆ(αv  gets to its maximum value M and ∞≠M . 

(The justification for assumptions (i) and (ii) is given in the Appendix.) 
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So, the estimated mean of the half-life estimator does not exist.      ■ 

 

Based on the inversion formula, we know that  

      )1)(ˆ(ˆ)ˆ( K+= αα ff    . 

Therefore if the estimated mean M̂ ( ĥ ) based on the saddlepoint approximation does not exist, 

then the true mean )ˆ(hM does not exist, either.  

 

Corollary 1  

Let the data follow a stationary AR(1) process: ttt uyy += −1α , with tu ~ ),0( 2σN . The half-

life estimator is defined as )ˆlog(/)5.0log(ˆ α=h , where α̂  is the least squares estimator and 
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)1,0(ˆ ∈α . Then none of the integer-order moments of the half-life estimator exist.  

The proof follows that of Theorem 1. 

 

4. Properties of the half-life estimator in the AR(p) model 

Now consider the situation where the data follow an AR(p) process: 

                                       tit

p

i
it uyy += −

=
∑

1

α .                                             (10) 

There is no explicit expression for the half-life based on the estimation of the coefficients in (10). 

The approach often used in practice is to re-formulate (10) into a form reminiscent of an 

augmented Dickey-Fuller (ADF) regression: 
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If the data are stationary, )1,1(−∈β . Then, based on (11), we estimate the half-life using: 

                                  )ˆ1log(/)5.0log(ˆ β+=h ;                )1,0(ˆ1 ∈+ β .                 (12) 

In order to express the OLS estimator β̂  simply, we first transform the data. Let 
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Let the covariance matrix of  R  to be TT 22 ×Ω  , and PP'1 =Ω− . Equation (13) can be written as: 
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As (14) and (3) are very similar we can derive the approximation to the density function of β̂  as 

                                             
{ }
[ ] 2

1

2
1

 21

 1

})ˆ{( 4

ˆ )'ˆ( 
)ˆ(ˆ

LNtr

NGPPNtr
f

−

−−

=
π

β  ,                                                (15) 

where PGQPLL )ˆ(')ˆ( ββ −== , LwIwNN ˆ2)ˆ(ˆ −==  and ŵ  satisfies 
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Applying the Lugannani-Rice formula, the approximate distribution function of β̂  is 
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Letting βα ˆ1~ += , and using the fact that the Jacobian is unity, the approximate density function 

of α~  is : 

                                    
{ }
[ ] 2

1

2
1

})~~{( 4

~ )'~(
)~(ˆ

21

1

LNtr

NGPPNtr
f

−

−−

=
π

α ,                                                     (18) 

where PGQPLL ))1~(()~(~
−−== αα , LwIwNN ~ˆ2)ˆ(~ −==  and ŵ  satisfies                                

)~~( 1LNtr − = 0. Using (12), and allowing for the Jacobian, the density function of the half-life 
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estimator in the AR(p) model is: 
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Let )0ˆ1.(Pr <<−= βK , which can be calculated from (17). Then, the saddlepoint 

approximation for the density function for the half-life estimator is: 
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where PGQPhLL h ))1)5.0((()ˆ( ˆ
1

−−′== , LwIwNN ˆ2)ˆ( −==  and ŵ  satisfies 

)( 1LNtr − = 0. Based on the density function (20), we have the following results, the proofs of 

which again follow that of Theorem 1. 

 

Theorem 2  

Suppose that the data follow a stationary AR(p) process and satisfy the ADF equation: 

tit

p

i
itt uyyy +Δ+=Δ −

−

=
− ∑

1

1
1 φβ , with tu ~ ),0( 2σN and )1 ,1(−∈β , and the half-life is defined 

as )ˆ1log(/)5.0log(ˆ β+=h , where β̂  is the least squares estimator and )0 ,1(ˆ −∈β . Then the 

mean of the half-life estimator does not exist.  

 

Corollary 2 

Suppose that the data follow a stationary AR(p) process and satisfy the ADF equation: 

tit

p

i
itt uyyy +Δ+=Δ −

−

=
− ∑

1

1
1 φβ , with tu ~ ) ,0( 2σN and )1 ,1(−∈β , and the half-life is defined 

as )ˆ1log(/)5.0log(ˆ β+=h , where β̂  is the least squares estimator and )0 ,1(ˆ −∈β . Then none 

of the integer-order moments of the half-life estimator exist.  

5. Robustness results 
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We have assumed that the data are normally distributed, but we now consider the robustness of 

our results to the relaxation of this assumption. King (1979; p. 121) proves, inter alia, that when 

the disturbance vector in a first-order autoregressive model follows an elliptically symmetric 

distribution, any linear unbiased or any well-behaved non-linear estimator will have very similar 

properties to those of the same estimator when the disturbance term is normally distributed. 

Accordingly, we would anticipate that our own results will be robust to departures from normality, 

within the elliptically symmetric family of distributions. Similar results relating to the Durbin-

Watson test statistic (and other regression statistics that are scale-invariant) are established by 

Kariya and Eaton (1977), and King (1979, 1980), and Chmielewski (1981) provides an excellent 

review of the associated statistical literature. 

 

Our concern here is whether the non-existence of the moments of the half-life estimator still holds 

under more general distributional assumptions. We can apply further results of Lieberman (1997) 

to establish the robustness of our earlier theorems. Lieberman derives the saddlepoint 

approximation for the density and cumulative distribution function for the estimator α̂  in an 

AR(1) model with exogeneous variables. Applying his result to (3), we can get the saddlepoint 

approximation to the density of α̂  in (3). First, let  
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Then the saddlepoint approximation to the density of α̂  is: 
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with the saddlepoint ŵ  satisfying  
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Suppose that v  has arbitrary cumulants 0=ik , jik , , L,,, kjik , defined as follows:   

),(, jiji vvcumk =  

),,(,, kjikji vvvcumk = . 

Then (24) and (26) can be expressed in terms of the cumulants of v:  jik , , L,,, kjik . 
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The approximating function in (21) is continuous on a closed interval ]1 ,0[ˆ ∈α . Let 
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If v  is ... dii  and the second cumulant of v  is finite, then Sk2
~

 and 10
~k  are defined by (29) and 

(30). We can also see that both Sk2
~

 and 10
~k  are continuous functions of α̂  on the closed 

interval [ ]1  ,0 , and they are the sum of a finite number of terms. Therefore, there is a non-zero 

minimum and maximum for the numerator and denominator of the expression for the density 

function of α̂  in (21). We assume that N̂  is the minimum value of the numerator and M̂  is the 

maximum value of the denominator, and 0ˆ ≠N , 0ˆ ≠M . Then, as was the case in Corollary 1, it 

is readily seen that none of the integer-order moments of ĥ  exist in this more general case. 

  

So, our main results hold as long as v  is ... dii  and the second cumulant of v  is finite. When we 

allow the disturbances to be correlated, the situation is more complicated. However, there is still 

quite a large class of distributions satisfying the conditions of the above proof. For the AR(p) 
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model, we can apply (21) to (18). The situation is almost the same as for the AR(1) model. The 

non-existence results in Corollaries 1 and 2 are quite robust to the distributional assumption. 

  

6.  Conclusions 

This paper provides saddlepoint approximations for the density and distribution functions for the 

half-life estimators based on the OLS estimation of AR(1) or AR(p) models, and proves 

analytically that the integer-order moments of such half-life estimator do not exist. These results 

are shown to be quite robust to the underlying distributional assumptions. These properties of the 

conventional half-life estimators explain both the unreasonably large point estimates, and very 

wide confidence intervals that have been reported in the associated empirical studies.  

 

Our results have some implications for future research.  Fundamentally, the poor properties of the 

half-life estimator may suggest that the measure that has been traditionally used is not a good one. 

This is consistent with Chortareas and Kapetanios (2004). Future work may be better to focus on 

constructing more appropriate measures of persistence, rather than just explore possible ways of 

improving the accuracy of the traditional half-life measure.  
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Figure 1: Density of the half-life estimator when T = 30
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Figure 2: Density of the half-life estimator when alpha = 0.9
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Appendix  

 

Here we justify assumptions (i) and (ii) used in the proof of Theorem 1. First, we prove that 

0≠N : 

N = { } 2
1

ˆ)ˆ()( 2
1 −− ′= ARCRAtru ααα  . 

So, if N =0, then 0ˆ 2
1

=
−

A  or { } 0)ˆ( 2
1 =′−

αα RCRAtr . 

As the density exists, it follows that 0ˆ 2
1

≠
−

A . 

 For                               { } ∑
−

=′
=

− T

t t

t
dw

fRCRAtr
0

2
1

ˆ21
)ˆ( αα , 

where  the td  are the eigenvalues of matrix D and the tf  are the eigenvalues of αα RCR 2′ , 

as 
⎭
⎬
⎫

⎩
⎨
⎧

∑ −−=
=

− T

t
idwA

0
)ˆ21log(

2
1expˆ 2

1

exists, 
tdŵ21

1
−

must be positive. Also, αα RCR 2′ is a 

positive definite matrix, so the eigenvalues tf  are all positive. Therefore: 

                                          { } 0)ˆ( 2
1 >′−

αα RCRAtr  , 

and so  0≠N . 

 

Second, we prove that M is finite: 

[ ] [ ]
2

1

2
1

0

2221 )ˆ21(4})ˆ{(4)~(
⎭
⎬
⎫

⎩
⎨
⎧

∑ −===
=

− T

t
tt dwdDAtrvM ππα , 

so, if M is infinite, it must be the case that 2)ˆ21(
1

tdw−
 is zero. But from 0ˆ 2

1

≠
−

A , we know 

this cannot hold. So, M is finite. 
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