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Abstract 

 
We derive analytic expressions for the biases of the maximum likelihood estimators of the scale 

parameter in the half-logistic distribution with known location, and of the location parameter 

when the latter is unknown. Using these expressions to bias-correct the estimators is highly 

effective, without adverse consequences for estimation mean squared error. The overall 

performance of the first of these bias-corrected estimators is slightly better than that of a 

bootstrap bias-corrected estimator. The bias-corrected estimator of the location parameter 

significantly out-performs its bootstrapped-based counterpart. Taking computational costs into 

account, the analytic bias corrections clearly dominate the use of the bootstrap. 
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1. Introduction 

The half-logistic (or folded-logistic) distribution was proposed by Balakrishnan (1985) as a life-

testing model. One of the attractions of this distribution in the context of reliability theory is that 

it has a monotonically increasing hazard rate for all parameter values, a property shared by 

relatively few distributions which have support on the positive real half-line. In terms of tail 

behaviour, the half-logistic distribution provides a degree of flexibility as its tail thickness lies 

between those of the half-normal and half-Cauchy distributions. The half-logistic distribution has 

also been used successfully to model records. For example, Mbah and Tsokos (2008) apply it to 

environmental and sports records data. 

 

If X follows a logistic distribution, then || XY   has a half-logistic distribution, the p.d.f. for 

which is: 
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where μ and  σ are the location and scale parameters respectively. The moments of this 

distribution are given in Appendix A.1.  

 

Various estimators for the parameters of the half-logistic distribution have been proposed, for 

both uncensored and censored data. For example, see Balakrishnan and Puthenpura (1986), 

Balakrishnan and Wong (1991), Balakrishnan and Chan (1992), and Adatia (1997, 2000). In 

addition, the operating characteristic under acceptance sampling from the half-logistic 

distribution has been discussed by Kantam and Rosaiah (1998). In this paper we deal with 

maximum likelihood estimation with uncensored data. 

 

If the location parameter of (1) is unknown, its MLE is well-known to be the smallest order 

statistic in the sample (e.g., Balakrishnan and Wong, 1991, p.142). However, the MLE for the 

scale parameter cannot be expressed in closed form, whether the location parameter is known or 

not. Notwithstanding this complication, we derive the bias, to )( 1nO , of the MLE of the scale 

parameter of the half-logistic distribution in the interesting case where the location parameter is 

known to be zero. It transpires that this MLE has extremely small relative bias, even in very small 

samples. We also consider a very simple bias-corrected counterpart to this estimator, and show 

that its bias is an order of magnitude less than that of the MLE itself, and that this is achieved 
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without increasing relative mean squared error (MSE). The alternative approach of using the 

bootstrap to correct for the bias of the MLE is found to be inferior to our analytic correction.  

 

We also simulate the bias and MSE of the MLE’s of the scale and location parameters, and their 

bootstrap-bias-adjusted counterparts, when the location parameter is unknown. In this case exact 

expressions for the first two moments of the MLE for the location parameter can be deduced from 

the recurrence formulae given by Balakrishnan (1985) for the standardized half-logistic 

distribution. In particular, the associated exact expression for the bias of the MLE of the location 

parameter depends only on the sample size and the true value of the scale parameter. So, bias-

correcting the MLE for the location parameter is quite straightforward in this case, and we show 

that it is highly effective. As noted above, when the location parameter is unknown the MLE for 

the scale parameter cannot be expressed in closed form. Unfortunately, the methods that we adopt 

to obtain the O(n-1) bias of this MLE in the case of a known location parameter cannot be used 

when this parameter is unknown. A bootstrap-based bias correction is also considered in this case, 

but it has little impact on the performance of the MLE of the scale parameter.  

 

The next section presents summarizes the analytic techniques that we use to evaluate the bias of 

the MLE of the scale parameter, to )( 1nO , when the location parameter is known. Our principal 

results appear in section 3; and a selection of numerical evaluations are given in section 4. 

Section 5 concludes. Some technical details are provided in Appendix A. 

 

2. Preliminary Results 

Let )(l  be the log-likelihood function based on a sample of n observations, with p-dimensional 

parameter vector, θ. )(l is assumed to be regular with respect to all derivatives up to and 

including the third order. Define: 

 )/( 2
jiij lEk     ; i, j = 1, 2, …., p    (2) 

)/( 3
ljiijl lEk     ; i, j, l = 1, 2, …., p   (3) 

)]/)(/[( 2
, ljilij llEk    ; i, j, l = 1, 2, …., p .   (4) 

and  

 lij
l

ij kk  /)(    ; i, j, l = 1, 2, …., p.   (5) 

All of the expressions in (2) – (5) are assumed to be O(n). Extending earlier work by Tukey 

(1949), Bartlett (1953a, 1953b), Haldane (1953), Haldane and Smith (1956), Shenton and 
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Wallington (1962) and Shenton and Bowman (1963), Cox and Snell (1968) showed that when the 

sample data are independent (but not necessarily identically distributed) the bias of the sth element 

of the MLE of θ ( )̂ is: 
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where kij is the (i,j)th element of the inverse of the (expected) information matrix, }{ ijkK  . 

Cordeiro and Klein (1994) note that this bias expression also holds if the data are non-

independent, provided that all of the k terms are O(n), and show that it can be re-written as: 
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The computational advantage of (7) over (6) is that it does not involve terms of the form defined 

in (4). 

 

Now, let )2/()()(
ijl

l
ij

l
ij kka  , for i, j, l = 1, 2, …., p; and define the following matrices: 

 }{)( l
ij

l aA  ; i, j, l = 1, 2, …., p      (8) 

 ]|.......||[ )()2()1( pAAAA  .       (9) 

 

Cordeiro and Klein (1994) show that the expression for the O(n-1) bias of  ̂  can be re-written as:  

 

)()()ˆ( 211   nOKvecAKBias  .      (10) 

 

A “bias-corrected” MLE for θ can then be obtained as: 

 

)ˆ(ˆˆˆ~ 11  KvecAK ,        (11) 

where  ̂|)(ˆ KK   and  ̂|)(ˆ AA  , and it can be shown that the bias of ~ will be O(n-2). 

Unfortunately, the Cox-Snell methodology does not facilitate the derivation of the variance of the 

MLE for θ or for ~ . Finally, it is crucial to note that (10) and (11) can still be evaluated even 

when the likelihood equation does not admit a closed-form analytic solution, and the MLE has to 

be obtained numerically. 
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3. Bias of the MLE  

3.1 Known location parameter  

Under independent sampling from the half-logistic distribution, with uncensored data, the 

log-likelihood function when 0  is: 
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Note that there is no closed-form solution to the likelihood equation obtained by equating (13) to 

zero.   

 

In what follows, we will require the following derivatives of the log-likelihood function: 
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To evaluate the expectations of these derivatives we will use the following results for a half- 

logistic variate, Y, the proofs of which appear in Appendix A.2: 

 

 ]5.0)2[ln()]}/exp(1/[)]/exp({[   yyyE     (16) 

]1)6/)[(3/(})]/exp(1/[)]/exp({[ 2222   yyyE     (17) 

)]12/(5.0[})]/exp(1/[))]/2exp()/(exp({[ 2333   yyyyE   (18) 

 

We then have the following expressions relating to the joint cumulants of the derivatives of the 

log-likelihood function: 
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The (expected) information measure is 

 )/(429956044.1 2
11 nkK   ,     (23) 

and 

 )1(
11aA   .        (24) 

So, using Cordeiro and Klein’s (1994) modification of the Cox-Snell (1968) result, to )( 1nO ,  

)/(052567665.0

)()ˆ( 11

n

KAvecKBias
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
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      (25) 

The bias is unambiguously negative, and very small in relative terms. Of course, this is a very 

encouraging result for practitioners who apply this distribution. Moreover, the relative bias is 

invariant to the value of the scale parameter. An unbiased (to )( 2nO ) estimator of σ can be 

constructed as nnBias /)052567665.0(ˆ))ˆ(ˆ(~   . Correcting for the bias in this 

way also has implications for the MSE of the estimator, and this point is taken up in section 4.  

 

3.2 Unknown location 

In this case the log-likelihood function is 

 


n

i
iynynnnl

1
}]/)exp{(1ln[2)/()/()ln()2ln(  .  (26) 

 

The MLE for μ is ny :1ˆ  , the smallest sample order statistic. Balakrishnan (1985) provides 

values for the mean of ̂  for the standardized half-logistic variate, Z. Immediately, it follows that 

)()ˆ( ZEBias   , where )(ZE  can be derived from the recurrence formula (2.2) in Balakrishnan 
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(1985, p.290), and is tabulated as the numerical quantity n:1  in his Table I, for small values of n. 

A bias-corrected estimator of μ can then be constructed as n:1ˆˆ~   , where ̂  is the MLE 

for   obtained by solving equation (28) below, numerically. 

 

Now consider the estimation of σ. Using the expression for ̂ , the profile log-likelihood function 

is 
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and the likelihood equation for the scale parameter is 
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Equation (28) does not admit a closed-form solution for σ so the MLE, ̂ , must be obtained 

numerically. Moreover, to see that the Cox-Snell methodology adopted in section 3.1 is not 

feasible in this case, it suffices to consider the second derivative of the log-likelihood equation: 
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To evaluate the expectation of the expression in (29) requires knowledge of the joint distribution 

of iy and ny :1 , which does not appear to be tractable. The situation becomes even more 

complicated when the higher order derivatives are considered. So, we are unable to use the Cox-

Snell approach to obtain an expression for the O(n-1) bias of ̂  in this case. 

 

4. Numerical Evaluations 

The biases and MSEs of the various maximum likelihood and bias-corrected maximum likelihood 

estimators have been simulated in a Monte Carlo experiment. The simulations were undertaken 

using the maxLik package (Toomet, 2008) for the R statistical software environment (R, 2008), on 

a P.C. with a Pentium 4 processor clocked at 2 GHz running Windows XP-Pro. Each part of the 

experiment uses 20,000 Monte Carlo replications. Half-logistic variates were generated using the 
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inversion method, and the log-likelihood function was maximized using the Nelder-Mead 

algorithm and the results were verified with the (slower) Newton-Raphson algorithm.  

 

Bootstrap-bias-corrected estimators are also investigated as obvious competitors to the analytic 

bias-corrected estimators that we are considering. The bootstrap-bias-corrected estimator of σ, for 

example, is defined as 


BN

j
jBN

1
)( ]ˆ)[/1(ˆ2  , where )(ˆ j is the MLE of   obtained from 

the jth of the NB bootstrap samples. See Efron (1982, p.33). This estimator is also unbiased to 

)( 2nO , but in many applications it is known to suffer from inflated variance. We have assigned 

NB = 1,000. Bias correction based on the bootstrap is the only method for reducing the bias of the 

MLE of σ that we have considered when the location parameter is unknown, for the reasons 

outlined above. 

 

4.1 Known location 

The expression in (25), for the bias of ̂  when μ is known, is valid only to )( 1nO . The actual 

bias of this estimator is illustrated in Table 1. There, we report simulated percentage biases and 

MSE’s, the former defined as 100 (Bias / σ) and the latter defined as 100 (MSE / σ2). For each 

of the estimators under consideration in Table 1, both of these measures are invariant to the value 

of  , for a given sample size. 

 

Several key results emerge from Table 1. First, the percentage bias of the MLE is negative but 

extremely small, even for very small sample sizes, which is most encouraging for users of this 

estimator. Second, however, the absolute bias of the bias-corrected estimator, ~ , is often an order 

of magnitude less than that of the original MLE. Although there may be limited motivation for 

using this bias-corrected estimator, it is trivial to implement, and its bias is negligible, in 

percentage terms. Third, these gains in bias reduction when using ~  come at the cost of 

increases in variance, as is evidenced by the very small differences in the percentage MSE’s that 

are reported for ̂  and ~ . Fourth, the bootstrap-bias-corrected estimator performs at least as 

well as ~ , in terms of (absolute) bias reduction when n < 20, but at considerable additional 

computational expense. The cpu time taken to obtain ̂  and ~ is between 0.02 and 0.03 seconds 

for the sample sizes in Table 1. In contrast, obtaining ̂  and the bootstrap-corrected estimator, , 

takes between 10.3 and 10.4 seconds of cpu time. 
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Finally, the bootstrap correction is also slightly less effective than the analytic correction in terms 

of the resulting relative mean squared error. Overall, taking into account the relative 

computational costs, these results support using the Cox-Snell analytic approach to correct for 

bias to O(n-1). 

 

4.2 Unknown location 

Table 2 reports the simulation results for the case where μ is unknown. It will be recalled that the 

MLE for μ ( ̂ ) is the smallest order statistic in the sample. The properties of ̂  and the 

analytically bias-adjusted estimator, ~ , proposed in section 3.2, are compared with those of the 

bootstrap-bias-corrected estimator. The results for ̂  (but not ̂ ) can be computed exactly from 

the information in Tables I and II of Balakrishnan (1985) for 15n , and from our own 

extensions to these tables (available at http:web.uvic.ca/~dgiles/downloads/half-logistic) for 

15n . These values for the relative bias and MSE of ̂  were also used to verify that the 

simulation results in Table 2 are accurate to the reported precision. As it is not feasible to develop 

an analytic bias correction for ̂  in this case, the properties of this MLE are compared only with 

those of its bootstrap-bias-corrected counterpart. For a given sample size, all of the results for the 

estimators of   in Table 2 are invariant to the values of   and  μ, which are set to 1 and μ = 

10. If we multiply μ ( ) by a constant, c (d), this scales the relative biases and MSE’s for the 

estimators of  μ  in Table 2 by c -1 and c-2 (d and d -1) respectively. 

 

The MLE of the scale parameter, ̂ , in Table 2 is again biased downwards, but the relative bias 

is approximately two orders of magnitude greater than in the case where μ is known. The 

bootstrap bias correction offers only a marginal improvement in terms of either bias or MSE. The 

MLE of the location parameter is positively biased, and this bias can be approximately halved 

(with a slight reduction in MSE) by implementing a bootstrap bias correction. The analytic bias-

corrected estimator, ~ , has negligible bias and even smaller MSE than its bootstrap-corrected 

counterpart. The excellent performance of ~  is not surprising as the associated analytic bias 

correction would be exact (for all n) if   were known. This corrected estimator is more effective 

and more cost-efficient than the bootstrap-corrected estimator of the location parameter. The 

computing time taken to obtain ̂ , ̂  and ~  is between 0.02 and 0.03 seconds for the sample 

sizes in Table 2. On the other hand, obtaining ̂ , ̂  and the bootstrap-bias-corrected estimators 

(  and  ) takes between 18.2 and 19.8 seconds. 
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5. Conclusion 

The maximum likelihood estimator of the scale parameter in the half-logistic distribution with a 

known location is found to have an extremely small (negative) percentage bias, even with quite 

small sample sizes. Using the Cox-Snell procedure for determining the O(n-1) bias of this 

estimator, and then making the associated analytic bias correction, reduces this small bias by a 

further order of magnitude. This is achieved without additional MSE, and the computational cost 

of bias adjusting the MLE is negligible. Similar results can be obtained using a bootstrap bias-

corrected estimator, but with substantially greater computational cost. 

 

When the location parameter of the half-logistic distribution is unknown, the MLE of the scale 

parameter exhibits marked negative percentage bias, and this cannot be reduced to any degree by 

bootstrap bias-correcting the estimator. In contrast, the positive relative bias of the MLE of the 

location parameter can be approximately halved by using a bootstrap bias correction, and almost 

eliminated by using a simple analytic correction that is both computationally trivial and also 

reduces the relative MSE of the estimator. 

 

In summary, the various analytic bias corrections that are explored in this paper either out-

perform, or are as effective as, the corresponding bootstrap bias corrections. When the relative 

computational costs are taken into account, the analytic corrections clearly dominate. 
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Table 1 

Simulated percentage biases and mean squared errors:  known location parameter 

 

n % )ˆ(Bias      % )~(Bias     % )(Bias        % )ˆ(MSE        % )~(MSE       % )(MSE  
 
 

10 -0.675  -0.153  0.103  6.875  6.943  6.991 

15 -0.370  -0.021  0.014  4.561  4.591  4.644 

20 -0.295  -0.033  0.042  3.472  3.490  3.524 

25 -0.207  -0.003  0.102  2.776  2.787  2.823 

50 -0.123  -0.018  0.098  1.405  1.407  1.423 

75 -0.114  -0.044  0.097  0.935  0.936  0.931 

100 -0.062  -0.009  0.031  0.704  0.705  0.711 

 

Table 2 

Simulated percentage biases and mean squared errors: unknown location parameter  

 

n % )ˆ(Bias  % )(Bias   % )ˆ(Bias   % )(Bias        % )~(Bias  

[% )ˆ(MSE ] [% )(MSE ]  [% )ˆ(MSE ] [% )(MSE ] [% )~(MSE ] 
 
 

10 -10.754  -9.865   1.843  0.893  0.199 

 [7.665]  [7.644]   [0.064]  [0.043]  [0.034] 

15 -7.231  -6.721   1.258  0.584  0.088 

 [4.941]  [4.986]   [0.030]  [0.020]  [0.015] 

20 -5.510  -5.021   0.956  0.439  0.058 

 [3.685]  [3.786]   [0.018]  [0.012]  [0.009] 

25 -4.373  -4.221   0.772  0.342  0.035 

 [2.907]  [2.963]   [0.012]  [0.008]  [0.006] 

50 -2.192  -2.077   0.391  0.170  0.009 

[1.428]  [1.463]   [0.003]  [0.002]  [0.002] 

75 -1.461  -1.371   0.263  0.110  0.004 

 [0.952]  [0.950]   [0.001]  [0.001]  [0.001] 

100     -1.084  -1.083   0.198  0.085  0.002 

 [0.712]  [0.706]   [0.001]  [0.001]  [0.000] 
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Appendix A 

 

A.1 Moments of the half-logistic distribution 

The central moments of the standardized half-logistic distribution can be evaluated using the 

following result (Gradshteyn, and Ryzhik, 1994; integral 3.424, no.2): 
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Letting  /)(  YZ , from (1) the density of the standardized variate, Z, is 
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Applying (A.1) with a = 0 and n = r: 
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An alternative derivation of (A.2) is provided by Balakrishnan and Wong (1991, p. 140). Using 

the Maclaurin series for )1ln( w with w = 1, it follows that )4ln()( ZE . Similarly, using the 

relationship 






1

22 )6/(
k

k , we have )3/()( 22 ZE  . The moments of Y itself can, of course, 

be derived directly from (A.2) by applying the binomial theorem: 
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When 0 , using the convention that 00 = 1, it follows immediately that )4ln()( YE  and 

})]2[ln(4)3/{()( 222  YV , etc. 
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A.2 Derivation of equations (16) – (18) 

All of the following results have been established analytically, and then verified by using the 

Maple 10 package (Maplesoft, 2005). Further details are available on request to the author. 

 

(i) Equation (16) follows directly from (13) by recalling that 0)/(  lE , and using the 

result that )2ln(2)( YE , from Appendix A.1. 
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The evaluation of this integral is tedious, but can be accomplished by using the change of 

variable, )/exp( yz  , and then repeatedly integrating by parts and by partial fractions. A final 

change of variable, 1 zw , and the use of the integral 
1

0

)1ln(
dw

w

w
 = )12/( 2  (Gradshteyn, 

and Ryzhik, 1994; integral 4.291, no.1.) , yields the result: 

]1)6/)[(3/(})]/exp(1/[)]/exp({[ 2222   yyyE . 

 

(iii) })]/exp(1/[))]/2exp()/(exp({[ 33  yyyyE   
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This integral can be evaluated by using the same approach as in (ii), yielding: 

 )]12/(5.0[})]/exp(1/[))]/2exp()/(exp({[ 2333   yyyyE . 
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