UNIVERSITY OF VICTORIA

EXAMINATIONS, APRIL 2008

ECONOMICS 546: THEMES IN ECONOMETRICS

TO BE ANSWERED IN BOOKLETS

DURATION: <u>3 HOURS</u> INSTRUCTOR: D. Giles

STUDENTS MUST COUNT THE NUMBER OF PAGES IN THIS EXAMINATION PAPER BEFORE BEGINNING TO WRITE, AND REPORT ANY DISCREPANCY IMMEDIATELY TO THE INVIGILATOR.

THIS QUESTION PAPER HAS 7 PAGES. STATISTICAL TABLES ARE SUPPLIED SEPARATELY.

This is a "closed book/closed notes" examination. Calculators may be used. Answer <u>ALL QUESTIONS</u>

(Total Marks = 90)

Question 1:

Suppose that we have a sample of "n" independent observations from a continuous distribution whose mean is θ and whose p.d.f. is:

$$p(y_i) = (1 / \theta) \exp[-y_i / \theta]; \quad \theta > 0; \quad 0 < y_i < \infty; \quad i = 1, 2, \dots, n.$$

(a) Show that the MLE of θ is the arithmetic mean of the y_i values. (Check the second-order condition, because you will need this information below.)

(4 marks)

(b) Suppose that we want to test the hypothesis that $\theta = 1$, against a two-sided alternative hypothesis. Construct the LRT and Wald statistics for this test, and explain how the tests would be conducted.

(8 marks)

(c) Construct the LM test for this same null hypothesis, and apply it for the case where n = 10 and the sample mean is 1.5.

(6 marks) Total: 18 Marks

Question 2:

Consider the standard linear multiple regression model, $y = X\beta + \varepsilon$, with all of the usual "ideal" assumptions about the regressors and the error term, *except* suppose that the error vector, ε , has the following *joint* density function :

$$p(\varepsilon | v) = c[v + \varepsilon' \varepsilon]^{-(n+v)/2}$$

where v (> 0) is a *known* parameter; and *c* is a positive "normalizing" constant that ensures that the density integrates to unity.

(a) Show that the MLE for β is just the usual OLS estimator.

(4 marks)

(b) Show that the Hessian matrix, when evaluated at the MLE for β , is the matrix $-[(n + v)(X'X)/(v + ns^2)]$, where ns^2 is the sum of the squared OLS residuals.

(5 marks)

(c) Using this Hessian matrix, construct a Wald-type statistic for testing a standard set of exact independent linear restrictions, $R\beta = q$. What can you say about the distribution of this test statistic?

(4 marks)

(d) Suppose that we are totally ignorant, a priori, about β . What is the Bayes estimator for β under a zero-one loss function?

(5 marks) Total: 18 Marks

Question 3:

let *X* be a (continuous) random variable that follows a Gamma Distribution. Then, its p.d.f. is:

$$p(x) = (x/n)^{c-1} e^{-(x/b)} / [b\Gamma(c)] \qquad ; \qquad x > 0; \ b, c > 0$$

where $\Gamma(.)$ is the usual Gamma function:

$$\Gamma(z) = \int_0^\infty t^{z-1} e^{-t} dt \,,$$

which satisfies the recursion relationship:

$$\Gamma(z+1) = z\Gamma(z)$$

The parameter c is the shape parameter, and b is the scale parameter for this distribution. It can be shown that the moments (about the origin) of this distribution are:

$$E(X^r) = b^r \prod_{i=0}^{r-1} (c+i); r = 1, 2, 3, \dots$$

(a) Derive Method of Moments estimators for *b* and *c*.

(9 Marks)

(b) What desirable property (ies) will these estimators have?

(1 mark) Total: 10 Marks

Question 4:

Consider the Natural Conjugate Bayes estimator of β in the standard Normal multiple linear regression model, under a quadratic loss function. That is, $\beta = [A + X'X]^{-1}[A\beta + X'y]$, where β is the mean of the (conditional) prior density for β , and $\sigma^2 A^{-1}$ is the covariance matrix of the (conditional) prior for β .

(a) Show that this estimator is biased. Why does this really not matter to a Bayesian econometrician?

(5 Marks)

(b) If the conditional prior covariance matrix for β were chosen to be equal to the covariance matrix for the Maximum Likelihood estimator of β in this model, show that the expected value of the Bayes estimator of β is a simple average of the conditional prior mean for β , and β itself.

(4 Marks)

(c) What estimator will β converge to if (i) the sample size becomes very large; (ii) the elements of A^{-1} become very large?

(4 Marks) Total: 13 Marks

Question 5:

Suppose that we use a Poisson regression model to model some "count" data, y_1, y_2, y_3, \dots So, we specify:

$$\Pr[Y = y_i] = \exp(-\lambda_i)\lambda_i^{y_i} / y_i!$$

and then set

$$\lambda_i = \exp[x_i \beta]$$
; $i = 1, 2, 3, ..., n$

(a) Write down the log-likelihood function for this model, based on n independent observations, and show that the first-order condition for maximizing it is:

$$\sum_{i=1}^{n} [y_i - \exp(x_i'\beta)] x_i = 0.$$

(4 Marks)

(b) Show that the marginal effect associated with the j^{th} (continuous) covariate at observation *i* is $ME_{ii} = [\beta_i \exp(x_i'\beta)]$.

(4 Marks)

(c) Explain how you would calculate the marginal effect if the the j^{th} covariate is a zero-one dummy variable.

(3 Marks) Total: 11 Marks

Question 6:

The following variables have been used to estimate a model to explain the number of bad credit reports that individuals receive:

NBR = Number of bad credit reports AGE = Age in years+ 12ths of a year, INCOME = Annual income, in dollars, divided by 10,000 AVGEXP = Average monthly credit card expenditure OWNRENT = Dummy variable: 1 if individual owns home; 0 if home is rented SELFEMPL = Dummy variable: 1 if individual is self-employed; 0 if not

OUTPUT 1

Dependent Variable: NBR Method: ML/QML - Poisson Count (Quadratic hill climbing) Date: 04/15/08 Time: 12:17 Sample: 1 100 Included observations: 100 Convergence achieved after 22 iterations QML (Huber/White) standard errors & covariance

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-1.321828	0.949746	-1.391770	0.1640
AVGEXP	-0.006787	0.003049	-2.225847	0.0260
INCOME	0.223979	0.099589	2.249026	0.0245
AGE	0.005081	0.027190	0.186856	0.8518
SELFEMPL	-46.56396	0.582881	-79.88587	0.0000
OWNRENT	0.172965	0.694080	0.249200	0.8032
R-squared	0.121087	Mean dependent var		0.360000
Adjusted R-squared	0.074336	S.D. dependent var		1.010250
S.E. of regression	0.971976	Akaike info criterion		1.673128
Sum squared resid	88.80535	Schwarz criterion		1.829438
Log likelihood	-77.65640	Hannan-Quinn criter.		1.736390
Restr. log likelihood	-91.93738	Avg. log likelihood		-0.776564
LR statistic (5 df)	28.56196	LR index (Pseudo-R2)		0.155334
Probability(LR stat)	2.83E-05			

(a) What type of model has been estimated in OUTPUT 1? Why? What method has been used to estimate the parameters of this model?

(4 marks)

(b) Interpret the "LR statistic" that is highlighted in OUTPUT 1. What are the null and alternative hypotheses, and what do you conclude?

(3 marks)

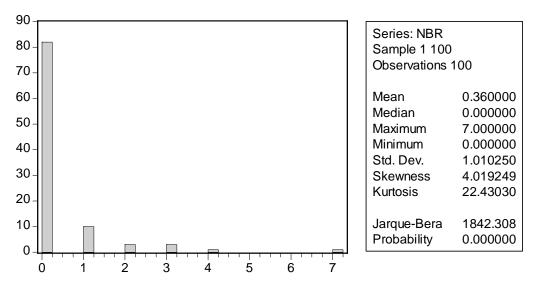
OUTPUT 2

Dependent Variable: NBR Method: ML/QML - Poisson Count (Quadratic hill climbing) Date: 04/15/08 Time: 12:25 Sample: 1 100 Included observations: 100 Convergence achieved after 22 iterations QML (Huber/White) standard errors & covariance

Variable	Coefficient	Std. Error	z-Statistic	Prob.
С	-1.122311	0.584739	-1.919337	0.0549
AVGEXP	-0.006751	0.002902	-2.326263	0.0200
INCOME	0.232016	0.095207	2.436948	0.0148
SELFEMPL	-32.90722	0.592579	-55.53223	0.0000
	0.447450			
R-squared	0.117150	Mean dependent var		0.360000
Adjusted R-squared	0.089561	S.D. dependent var		1.010250
S.E. of regression	0.963950	Akaike info criterion		1.636651
Sum squared resid	89.20315	Schwarz criterion		1.740858
Log likelihood	-77.83257	Hannan-Quinn criter.		1.678826
Restr. log likelihood	-91.93738	Avg. log likelihood		-0.778326
LR statistic (3 df)	28.20962	LR index (Pseudo-R2)		0.153418
Probability(LR stat)	3.28E-06			

OUTPUT 3

	AVEXP	INCOME	SELFEMPL	OWNRENT
Mean	189.0231	3.369300	0.360000	0.050000
Median	81.29500	3.000000	0.000000	0.000000
Maximum	1898.030	10.00000	1.000000	1.000000
Minimum	0.000000	1.500000	0.000000	0.000000
Std. Dev.	294.2446	1.629013	0.482418	0.219043
Skewness	3.241249	1.853352	0.583333	4.129483
Kurtosis	16.75127	7.293857	1.340278	18.05263


(c) Use the information in OUTPUT 2 and OUTPUT 3 to compute the marginal effect for INCOME, at the medians of the data, and interpret its value. [Hint: see Question 5.]

(5 marks)

(d) The following histogram and table (OUTPUT 4) shows the characteristics of the dependent variable in our model. What does this information suggest about the suitability of the model we have used above?

(2 marks)

Sample: 1 100 Included observations: 100 Convergence achieved after 22 iterations QML (Huber/White) standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.	
С	-1.398950	0.631889	-2.213917	0.0268	
AVGEXP	-0.005800	0.002073	-2.797558	0.0051	
INCOME	0.293698	0.157700	1.862389	0.0625	
SELFEMPL	-31.91880	0.559869	-57.01121	0.0000	
Mixture Parameter					
SHAPE:C(5)	1.127512	0.439562	2.565082	0.0103	
R-squared	0.100654	Mean dependent var		0.360000	
Adjusted R-squared	0.062787	S.D. dependent var		1.010250	
S.E. of regression	0.978021	Akaike info criterion		1.421938	
Sum squared resid	90.86990	Schwarz criterion		1.552196	
Log likelihood	-66.09688	Hannan-Quinn criter.		1.474656	
Restr. log likelihood	-91.93738	Avg. log likelihood		-0.660969	
LR statistic (4 df)	51.68099	LR index (Pseudo-R2)		0.281066	
Probability(LR stat)	1.61E-10				

(e) What type of model has been estimated in OUTPUT 5? Why?

(3 marks)

OUTPUT 6

Wald Test: Equation: Untitled					
Test Statistic	Value	df	Probability		
F-statistic	5.175592	(1, 95)	0.0252		
Chi-square	5.175592	1	0.0229		
Null Hypothesis Summary:					
Normalized Restric	Value	Std. Err.			
EXP(C(5))	3.087964	1.357351			

Delta method computed using analytic derivatives.

(f) Explain what test is being conducted in OUTPUT 6. What are the null and alternative hypotheses? What do you conclude from these results?

(3 marks) Total: 20 Marks

END OF EXAMINATION