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University of Victoria      Department of Economics 
 

ECON 546: Themes in Econometrics 
Lab. Exercise 2  

 
 
 
Introduction 
 
The purpose of this lab. exercise is to show you how to use EViews to estimate the parameters of 
a regression model by Maximum Likelihood, when the model is of some non-standard type. 
Specifically, you will learn how to estimate models of types that are not “built in” as a standard 
option in EViews. This will involve setting up the log-likelihood function for the model, based on 
the assumption of independent observations; and then maximizing this function numerically with 
respect to the unknown parameters. 
 
First, to introduce the concepts and commands that are involved, we’ll consider the standard 
linear multiple regression model with normal errors, for which we know that the MLE of the 
coefficient vector is just the same as the OLS estimator. This will give us a “bench-mark” against 
which to check our understanding of what is going on. Then we can move on to some more 
general models. Only part of this handout will be covered in the lab. class itself, which is why 
there is plenty of EViews output embedded in this document so that you can explore the rest of the 
material by yourself. 
 
Part 1 
 
So, suppose that we have a linear multiple regression model, satisfying all of the usual 
assumptions: 

 
where the regressors are non-random. The MLE for β is yXXX ')'(~ 1−=β , and the MLE for  σ2 

is nXyXy /)~()'~(~ 2 ββσ −−= . 
 

(a) Open the EViews workfile, S:\Social Sciencces\Economics\ECON546\lab2.wf1. 
(b) Estimate an OLS regression model with Y as the dependent variable, and an intercept 

and X as the regressors. Save the results as EQ01. 
 
So, our simple model is 
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and the marginal data density for the ith observation is 
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Given the independence of the data, to get the joint data density, and hence the Likelihood 
Function, we need to multiply each of the expressions of the form (1) together, for all ‘i’: 
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So, to get the Log-Likelihood Function, we need to add the logarithms of the marginal data 
densities: 
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So, a typical term in the summation that appears in equation (2) is obtained by taking the 
logarithm of (1): 
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(c) To get EViews to perform MLE, we have to supply a typical term of the form (3). This is 
 done via the so-called “LOGL” object. In your workfile, click on the Object button, and 
 choose the “New Object” option. Then, highlight LogL as, shown below. You can 
 supply a name for this object, either now, or later on when you save it – it may be a good 
 idea to call this new object LOGL01 at this stage. 
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When you click “OK”, this is what you will see next: 
 

 
 

(d) You can now enter the formula for the ith term of the Log-Likelihood Function into the 
 empty Object Box: 
 
@logl LL1 
eps = y-c(1)-c(2)*x 
ll1 = -log(c(3))-(eps^2)/(2*c(3)^2)-0.5*log(2*3.14159) 
 
The first line of code declares that we are constructing a log-likelihood function, and are going to 
call it LL1. (You can use any name you like.) The second line of code is introduced merely to 
make the expression in the third line a little simpler. Note that we are supplying the expression for 
just a single log-density. EViews will assume that the data are independent, and do the summing 
that we see in equation (2) above for us. Here, the coefficients c(1), c(2) and c(3) correspond to 
β1, β2, and σ respectively.  
 
The object box will now look like this: 
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(e) Now, press the “Estimate” button, and this is what you will see: 
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Notice that you have a choice of algorithms for maximizing the Log-Likelihood Function. In 
evaluating the derivatives you should always choose “accuracy” over “speed”. The following 
results then emerge when you click “OK”: 
 

 
 
The OLS results you saved as EQ01 are as follows: 
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(f) Why is the estimate of c(3) in the MLE output different from the “standard error of 
regression” in the OLS output? Why are the standard errors different? Verify that 
everything has actually been calculated correctly. 

(g) Notice that the “Log likelihood” values are the same in each output – this is the value 
of the Log-Likelihood Function when the MLE’s for the parameters are substituted 
into equation (2) above. It is the maximized value of the Log-Likelihood Function. 

(h) Check that the Log-Likelihood Function has been properly maximized. In the 
LOGL01 output box, click on “View”, “Gradients”, then “Summary”: 

 
 

 
 
 
The gradients in each direction of the parameter space are evaluated at each point in the 
sample. These values are summarized by taking the mean and sum of each gradient across the 
sample values. We see that the gradients are essentially zero, as they should be. 
 

Note: 
• In practice, you may need to edit the elements of the coefficient vector before you 

estimate a model by MLE to make sure that you don’t silly starting values for the 
maximization algorithm. For example, in this exercise, if we had not already altered 
the coefficient values by running the initial OLS regression, we would have had to 
make sure that c(3) did not start of with the (default) value of zero – can you see 
why? 

• If you need to modify the code for the Log-Likelihood specification in the LOGL01 
object box, just select “View”, then “Likelihood Specification” in that box’s header 
bar, and then edit accordingly. 

 
Now you are ready to estimate a non-standard model by MLE. 
 
 
Part 2 
 
Suppose that instead of assuming Normally distributed errors, you want to allow for “fat tails” 
(i.e., a higher probability of outliers) in the error distribution. Recall that the Student-t distribution 
has a density function with this property if the associated degrees of freedom are relatively small. 
The need to allow for fatter tails in the density may arise, for example, when modeling financial 
returns. The Student-t distribution has a finite first moment only if ν > 1, where ν is the degrees of 
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freedom parameter. It has a finite second moment only if ν > 2, so probably the smallest value for 
the degrees of freedom that we should consider is ν = 3. 
 

  
 
 
Also, recall from a class example, that if the errors of our standard multiple linear regression 
model follow a multivariate Student-t distribution, then the MLE for the coefficient vector is just 
the OLS estimator. However, this result does not arise if the individual errors are independent 
Student-t distributed! This is the specification that we will follow next. 
 
To set up the Log-Likelihood function we need to know the formula for the density function for a 
random variable that is Student-t distributed, with ν degrees of freedom. This density takes the 
form: 
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where ‘h’ is a scale parameter and  ‘const’ is the normalizing constant that ensures that the 
density is “proper” – that is, that it integrates to unity. (In the case of the normal density, this is 
the role that the π2/1 term plays.) For the Student-t density, this normalizing constant is: 
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where the “Gamma Function” is defined as: 
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Fortunately, EViews can evaluate )(xΓ for us via the @gamma(x) function. So, using (4), (5) 
and (6), we can build up a typical ith term in the Log-Likelihood Function. Note from (4) that 
 
  ]/1log[)2/)1(()log(5.0)log()]|([ 2 νεννε ii hhconstpLog ++−+= . 
 

(a) Create a new object and name it LOGL02. 
(b) Use the following code to set up the Log-Likelihood Function for our simple 

regression model with independent Student-t errors: 
 
@logl LL2 
eps = y-c(1)-c(2)*x 
v=3 
const=@gamma((v+1)/2)/(@sqrt(v*3.14159)*@gamma(v/2)) 
LL2 = log(const)+0.5*log(c(3))-((v+1)/2)*log(1+c(3)*(eps^2/v)) 
 

(c) You should now obtain the following MLE output: 
 

 
 
 

(d) Check the gradients to make sure that the Log-Likelihood Function has been properly 
maximized. 

(e) Are your results at all sensitive to the choice of initial values for the coefficients? 
(f) Compare the estimates of the two coefficients with those obtained when normally 

distributed errors were assumed. 
(g) Recall that as ∞→ν  the Student-t density becomes a normal density. So, what do 

you think will happen if you keep increasing the value assigned to ν in the LOGL02 
code? When ν = 300, you should get the following results: 
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(h) The variance of a Student-t distribution is )2(/)/( −νν h , which is defined if ν > 2. 
 Using the results of this last output, verify that the estimated error variance is 
 approximately the same as the error variance (not standard deviation) estimate that was 
 obtained with normal errors. 

 
Part 3 
 
Let’s now suppose that we want to generalize our last model even further. As well as allowing for 
an error distribution with fat tails, let’s suppose that we want to allow for a particular form of 
heteroskedasticity:  
   )exp{)var( 21 ii zααε +=  ;           i = 1, 2, 3, …, n 
 
where α1 and α2 are unknown parameters, and z is another variable for which data are available. 
Note that the special case of homoskedastic errors arises if α2 = 0. If we equate this variance 
expression with the Student-t variance given at the top of this page, we obtain: 
 
  )exp{)2/()/( 21 izh αανν +=− , 
or, 
  }]exp{)2[(/ 21 izh αανν +−=   ; i = 1, 2, 3, …, n. 
 

(a) Create a new object and name it LOGL03. 
(b) Use the following code to set up the Log-Likelihood Function for our simple regression 

model with independent but heteroskedastic Student-t errors: 
@logl LL3 
eps = y-c(1)-c(2)*x 
v=3 
h=v/((v-2)*@exp(c(3)+c(4)*z)) 
const=@gamma((v+1)/2)/(@sqrt(v*3.14159)*@gamma(v/2)) 
LL3 = log(const)+0.5*log(h)-((v+1)/2)*log(1+h*(eps^2/v)) 
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(c) You should now obtain the following MLE output: 
 
 

 
 
 

(d) Compare your results with those when homoskedasticity is assumed. 
(e) Check the gradients to see that we have effectively maximized the Log-Likelihood 

Function. 
(f) Looking at the last estimation results, is there any evidence of significant 

heteroskedasticity? 
 
 
 


