University of Victoria Department of Economics

ECON 546: Themes in Econometrics
Lab. Exercise 2

Introduction

The purpose of this lab. exercise is to show you how to use EViews to estimate the parameters of
a regression model by Maximum Likelihood, when the model is of some non-standard type.
Specifically, you will learn how to estimate models of types that are not “built in” as a standard
option in EViews. This will involve setting up the log-likelihood function for the model, based on
the assumption of independent observations; and then maximizing this function numerically with
respect to the unknown parameters.

First, to introduce the concepts and commands that are involved, we’ll consider the standard
linear multiple regression model with normal errors, for which we know that the MLE of the
coefficient vector is just the same as the OLS estimator. This will give us a “bench-mark” against
which to check our understanding of what is going on. Then we can move on to some more
general models. Only part of this handout will be covered in the lab. class itself, which is why
there is plenty of EViews output embedded in this document so that you can explore the rest of the
material by yourself.

Part 1

So, suppose that we have a linear multiple regression model, satisfying all of the usual
assumptions:

y=XB+e g~N[0,o-21n]
where the regressors are non-random. The MLE for £ is 5 = (X'X)‘lX'y , and the MLE for ¢
is &% = (v=XB)(v-XB)In.
@) Open the EViews workfile, S:\Social Sciencces\Economics\ECON546\lab2.wf1.
(b) Estimate an OLS regression model with Y as the dependent variable, and an intercept

and X as the regressors. Save the results as EQOL.

So, our simple model is
v, =P +0x +e & ~iid N[0,57] 1i=1,2,3,...,n

and the marginal data density for the /" observation is

1 1 2
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Given the independence of the data, to get the joint data density, and hence the Likelihood
Function, we need to multiply each of the expressions of the form (1) together, for all *i*:

L(By, Brro | ¥) = p(y| By Bay0) =f[p(y,» | s 1 0) -

So, to get the Log-Likelihood Function, we need to add the logarithms of the marginal data
densities:

Log[L(py, B,0 | y)]= Loglp(y | By, ;0]

= Logl[ [ (0,1 . B 0Y1 = 3 Logloy, | 5, 0] ?

So, a typical term in the summation that appears in equation (2) is obtained by taking the
logarithm of (1):

Log[p(yi |ﬁ1!ﬂ2’o-)] = —|09(6)—|OQ(27Z’)/2—%81-2 , Where & = (yi _ﬂl _ﬂzxi)- (3)

(c) To get EViews to perform MLE, we have to supply a typical term of the form (3). This is
done via the so-called “LOGL."” object. In your workfile, click on the Object button, and
choose the “New Object” option. Then, highlight LogL as, shown below. You can
supply a name for this object, either now, or later on when you save it — it may be a good
idea to call this new object LOGLOL1 at this stage.

T ) |{mf]
['«-‘iew][object] [Print][Save][DetaiIsH-] [Shuw][Fetch][StDre][Delete][Genr][Samph
Range: 120 - 20aobs Display Filter:
Sample: 120 - 20 obs
(Blc
=] eq1
F\J [1E}
E =
B
E Type of object Mame for object
B
Logl LOGLO1
Equation
Graph
Group
Logl
M atnix-vector-Coef
Maodel
Pool
Sample
Senies
| Series Link
< Sernies Alpha
: S5pace
Table
Test




When you click “OK?”, this is what you will see next:

[ Workfile: LAB - (c:\david documents\teaching\54612... |- [|O
[wiews | Proc [ object | [Print |[Save |Details-+i- | [Show |[Fetch || Store | Delete || Genr [ Sample |

Range: 120 - 20 obs Display Filter; *
sample: 120 - 20 obs

Blc

M -

=D Logl: LOGLOT Workfile: LAB: :Untitled ==

% ['-.-'iew][F‘ru:uc][OI:uject] [F‘rint][Name][Freeze] [MergeText][Estimate][Stats][Spec]

MEE

(d) You can now enter the formula for the i/ term of the Log-Likelihood Function into the
empty Object Box:

@logl LL1
eps =y-c(1)-c(2)*x
11 = -log(c(3))-(eps™2)/(2*c(3)"2)-0.5*l0g(2*3.14159)

The first line of code declares that we are constructing a log-likelihood function, and are going to
call it LL1. (You can use any name you like.) The second line of code is introduced merely to
make the expression in the third line a little simpler. Note that we are supplying the expression for
just a single log-density. EViews will assume that the data are independent, and do the summing
that we see in equation (2) above for us. Here, the coefficients c(1), ¢(2) and c(3) correspond to
[, B2, and o respectively.

The object box will now look like this:
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]| &@logl LL

BA '+ epe = y-cll o2l

BA ;111 = -loglci3-(eps 23/ (2 c(31"2)-0.5%0g (273, 14159
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©) Now, press the “Estimate” button, and this is what you will see:
S
[E ClLogl: LOGLOT Workfile: LAB: :Untitled\

% [Object] [Name][Freeze] [MergeText][Estimate][Stats]
7 @@logl LL1

& eps = y-c(l)-ci2)™

& 111 = -log(c(3)-(eps 2)/2*c(3)*2)-0.550g(2*3.14159)
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Notice that you have a choice of algorithms for maximizing the Log-Likelihood Function. In
evaluating the derivatives you should always choose “accuracy” over “speed”. The following
results then emerge when you click “OK”:

_
-

Wigst D

Ran = . —— . . . .

Sarn ['u'iew][F‘rn:n:][OI:-ject] [Print][Name][Freeze] [MergeText][Estimate][Stats][Spec]

Bl | ggl: LOGLO

al: Method: Maximum Likelihood (BHHH)

%E Date: 121809 Time: 13:31

A e Sample: 1 20

RA b Included ohservations: 20

Ewvaluation order: By obseration

EA |

M| Convergence achieved after 75 iterations

BA |

EAl Coefficient Std. Error =-Statistic Frob.
[E]l

EAl Cil 0314737 1.4716849 0214574 n.a20
¥aly Ci2) 1.084213 0110940 QFTI 0.0oo0
%r Ci3 2413336 0602963 4002460 0.0001

r

A Log likelihood -45 899900 Akaike info criterion 4 399400
A Avg. log likelihood -2.299950  Schwarz criterion a.049260
ga mHumber of Coefs. 3 Hannan-Quinn criter. 4 9290456

The OLS results you saved as EQO1 are as follows:

O Equation: EQ01  Workfile: LAB2::Untitled\ M=

['-.-'iew][F‘ru:uc][OI:uje-:t] [F‘rint][Name][Freeze] [Estimate][F-:ure-:ast][Stats][Resids]

Dependent Variable:
Method: Least Squares
Date: 1213/09 Time: 13:32
Sample: 1 20

Included obsenvations: 20

Wariahle Coefficient Std. Error tStatistic Frob.

C 03157849 1.181714 0267230 0.7923

bt 1.084211 0.098648 1099075 n.ooo0o
R-squared 0870314  Wean dependent var 11.70000
Adjusted R-squared 0863109 5.0, dependent var F.aT5536
S.E. of regression 2543884  Akaike info criterion 4 7994901
Sum sgquared resid 116.4842  Schwarz criterion 48399474
Log likelihiood -45.89901  Hannan-Guinn criter. 4319338
F-statistic 1207965  Durhin-watson stat 1.753823
ProhiF-statistic) Q.ooooon




0] Why is the estimate of ¢(3) in the MLE output different from the “standard error of
regression” in the OLS output? Why are the standard errors different? Verify that
everything has actually been calculated correctly.

@) Notice that the “Log likelihood” values are the same in each output — this is the value
of the Log-Likelihood Function when the MLE’s for the parameters are substituted
into equation (2) above. It is the maximized value of the Log-Likelihood Function.

(h) Check that the Log-Likelihood Function has been properly maximized. In the
LOGLO1 output box, click on “View”, “Gradients”, then “Summary”:

a

['u'iew][F‘ru:u:][Object] [Print][Name][Freeze] [MergeText][Estimate][Stats][Spec]

Gradient of objective function at estimated parameters
LoglL: LoGLo

Method: Maximum likelihood

Jses accurate numeric derivatives where necessary

Coefficient Sum Mean  Mewton Dir. Methad
Cil -8.33E-04 -4 16E-06 -B.02E-06 - numetic -
(] -0.001164 -h.82E-04 -1.8YE-06 - numeric -
Cih 2892E-05 1.46E-06 -1.0¥E-08 - numetric -

The gradients in each direction of the parameter space are evaluated at each point in the
sample. These values are summarized by taking the mean and sum of each gradient across the
sample values. We see that the gradients are essentially zero, as they should be.

Note:

e In practice, you may need to edit the elements of the coefficient vector before you
estimate a model by MLE to make sure that you don’t silly starting values for the
maximization algorithm. For example, in this exercise, if we had not already altered
the coefficient values by running the initial OLS regression, we would have had to
make sure that ¢(3) did not start of with the (default) value of zero — can you see
why?

o If you need to modify the code for the Log-Likelihood specification in the LOGLO1
object box, just select “View”, then “Likelihood Specification” in that box’s header
bar, and then edit accordingly.

Now you are ready to estimate a non-standard model by MLE.

Part 2

Suppose that instead of assuming Normally distributed errors, you want to allow for “fat tails”
(i.e., a higher probability of outliers) in the error distribution. Recall that the Student-t distribution
has a density function with this property if the associated degrees of freedom are relatively small.
The need to allow for fatter tails in the density may arise, for example, when modeling financial
returns. The Student-t distribution has a finite first moment only if v > 1, where v is the degrees of



freedom parameter. It has a finite second moment only if v > 2, so probably the smallest value for
the degrees of freedom that we should consider is v = 3.

Student -t & Std. Hommal Densities

—— Student- t (=3 —— Std Mormal

Also, recall from a class example, that if the errors of our standard multiple linear regression
model follow a multivariate Student-t distribution, then the MLE for the coefficient vector is just
the OLS estimator. However, this result does not arise if the individual errors are independent
Student-t distributed! This is the specification that we will follow next.

To set up the Log-Likelihood function we need to know the formula for the density function for a
random variable that is Student-t distributed, with v degrees of freedom. This density takes the
form:
12 hgiz —(v+1)/2
ple, |v) = const(h™ )1+ —] ; —0<g <™ 4)
1%

where ‘A’ is a scale parameter and ‘const’ is the normalizing constant that ensures that the
density is “proper” — that is, that it integrates to unity. (In the case of the normal density, this is

the role that the 1/+/27 term plays.) For the Student-t density, this normalizing constant is:

const = Tlv+1/2] (5)
Nvel'(v12)
where the “Gamma Function” is defined as:
I'(x) = j e 't dt . (6)

0



Fortunately, EViews can evaluate I'(x) for us via the @gamma(x) function. So, using (4), (5)
and (6), we can build up a typical i term in the Log-Likelihood Function. Note from (4) that

Log[p(e; |v)] = log(const) +0.5log(h) — (v +1)/ 2) log[L+ he? 1]

@ Create a new object and name it LOGLO02.
(b) Use the following code to set up the Log-Likelihood Function for our simple
regression model with independent Student-t errors:

@logl LL2

eps = y-c(1)-c(2)*x

v=3

const=@gamma((v+1)/2)/(@sqrt(v*3.14159)*@gamma(v/2))
LL2 =log(const)+0.5*log(c(3))-((v+1)/2)*log(1+c(3)*(eps”2/v))

(© You should now obtain the following MLE output:

.|
[siew](proc](Obe:

Range: 120 -
Sample:1 20 -

[E]c

kA const
EA eps
[=] eq01
EA ez
EA h

EA 111
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[E] logliot
[E] logioz
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B

O

['-.-'iew][F‘ru:uc][OI:uject] [F‘rint][Name][Freeze] [MergeText][Estimate][Stats][Spe-:]

Logl: LOGLOZ

Method: Maximum Likelihood (Margquardt)

Date: 121809 Time: 13:34
Sample: 1 20

Ihcluded ohservations: 20
Ewaluation order: By observation

Convergence achieved after 22 iterations

Coefficient Std. Error -Statistic Fraoh.

Cilh 02753649 1120637 0245724 080549

Ci 1.131869 0.0975745 11.69994 .ooon

Ci3) 0274652 0.149298 1.839623 0.0&858

Log likelihood 4T 04132 Akaike info criterion a.004132
Avg. log likelihood -2 352066  SchwarZ criterion 8153492
mHumber of Coefs. 3 Hannan-Gdinn criter. A.033289

(d) Check the gradients to make sure that the Log-Likelihood Function has been properly

maximized.

©) Are your results at all sensitive to the choice of initial values for the coefficients?
()] Compare the estimates of the two coefficients with those obtained when normally
distributed errors were assumed.
(9) Recall that as v — oo the Student-t density becomes a normal density. So, what do
you think will happen if you keep increasing the value assigned to v in the LOGL02
code? When v = 300, you should get the following results:



= b3
[Object] [Name][Freeze] [MergeText][Estimate][Stats]

ac|[objer Logl: LOGLOZ
]_ Method: Maximum Likelihood (Marguardt)

!.1 %g | Date: 12809 Time: 13:38
- Sarmnple: 1 20
st Included obserations: 20
= Evaluation arder. By ohsermvation
1 Convergence achieved after 26 iterations
Coefficient Std. Error I-Statistic Froh.
Zi 031583 1467796 0215208 0.8296
Cid 1.084703 0110858 978461 0.0000
11 C{3) 0172425 n.0gE202 2.000250 0.0455
12
13 Log likelihood -46.01137  Akaike info criterion 4 8901137
o A, log likelihood -2.3005868  Schwarz criterion 5.0504497
5 Mumber of Coefs. 3 Hannan-Quinn criter, 4930293

(h) The variance of a Student-t distribution is (v/4)/(v —2), which is defined if v > 2.

Using the results of this last output, verify that the estimated error variance is
approximately the same as the error variance (not standard deviation) estimate that was
obtained with normal errors.

Part 3

Let’s now suppose that we want to generalize our last model even further. As well as allowing for
an error distribution with fat tails, let’s suppose that we want to allow for a particular form of
heteroskedasticity:

var(e;) =exp{e, + a,z;) ; i=1,2,3,...,n

where a3 and a, are unknown parameters, and z is another variable for which data are available.
Note that the special case of homoskedastic errors arises if a, = 0. If we equate this variance
expression with the Student-t variance given at the top of this page, we obtain:

wih)I(v-2)=exp{a, +a,z,),
or,
h=vI[(v-2)exp{e, +a@,z,}] ; i=1,2,3,...,n.

(@) Create a new object and name it LOGLO03.
(b) Use the following code to set up the Log-Likelihood Function for our simple regression
model with independent but heteroskedastic Student-t errors:

@logl LL3
eps = y-c(1)-c(2)*x
v=3

h=v/((v-2)*@exp(c(3)+c(4)*z2))
const=@gamma((v+1)/2)/(@sqrt(v*3.14159)*@gamma(v/2))
LL3 =log(const)+0.5*log(h)-((v+1)/2)*log(1+h*(eps” 2/v))



(c) You should now obtain the following MLE output:

O
EI @ [Object] [Name][Freeze] [MergeText][Estimate][Stats]
20 Logl:LOGLO3
= Mhlethad: Maximum Likelihood (Marguardt)
Date: 1211809 Time: 1337
Sample: 1 20
Included obhservations: 20
Evaluation aorder: By abservation
Convergence achieved after 28 iterations
Coefficient Std. Errar -Statistic Frab.
1) 0595366 0927136 0642156 n.s208
ey 1.094496 0103904 1053358 n.0ooo0
C{3 1.736478 1.289447 1.346684 n17a
{4y 0064108 01058920 N.E05244 0.5450
Log likelihood -46. 74678 Akaike info criterion 074678
A, log likelihood -2.337339  Schwarz criterian 5.273825
Mumber of Coefs. 4 Hannan-Gllinn criter. 5.11345454
e
I

(d) Compare your results with those when homoskedasticity is assumed.

(e) Check the gradients to see that we have effectively maximized the Log-Likelihood
Function.

() Looking at the last estimation results, is there any evidence of significant
heteroskedasticity?
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