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University of Victoria                   Department of Economics 
 

ECON 546: Themes in Econometrics 
 

Examples of Markov Chain Monte Carlo Analysis 

 
 
Example 1 
 
Let X and Y be a pair of random variables whose joint distribution is 
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(a) What is the conditional distribution for X, given Y? 
(b) What is the conditional distribution for Y, given X? 
(c) Let’s use the EViews workfile S:\Social Sciences\Economics\ECON546\MCMC1.wf1 

and the program file S:\Social Sciences\Economics\ECON546\MCMC1.prg to  obtain 
the marginal distributions of X and Y.  Establish that E(X) = 3.3, E(Y) = 0.33, S.D.(X) = 
2.246, and S.D. (Y) = 0.178. These results do not depend on the initial value for Y. 

 
 
rndseed 123456 
!nrep=50000 
vector (!nrep) margy 
vector (!nrep) margx 
scalar n=10 
scalar y=0.1 
scalar a=2 
scalar b=4 
for !i=1 to !nrep 
   scalar x=@rbinom(n,y) 
   margx(!i)=x 
   scalar y=@rbeta(x+a,n-x+b) 
   margy(!i)=y 
next 
smpl 1 !nrep 
mtos(margx,px) 
mtos(margy,py) 
smpl 1001 !nrep 
px.hist  
py.hist 
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Example 2 
 
We’ll use the EViews workfile, S:\Social Sciences\Economics\ECON546\MCMC2.wf1 and the 
EViews program file S:\Social Sciences\Economics\ECON546\MCMC2.prg for this example. 
 
Here is the estimation problem: 
 
We have a sample of 10 “count data” observations that have been generated by two Poisson 
processes. The first m values come from a Poisson distribution with unknown mean, θ1, and the 
rest of the observations come from an independent Poisson distribution with known mean of θ2. 
The interesting part of the problem is that the value of m is also unknown. 
 
As θ1 must be positive, we put a Gamma prior on this parameter. We put a uniform prior on m 
over the range 1 to 10: 
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The likelihood function is: 
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So, recalling that θ2 is known, the joint posterior for the parameters is: 
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The conditional posterior density for θ1 is: 
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The conditional posterior for m is a completely non-standard p.m.f. on [1 , n]: 
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We can simulate drawings from this discrete distribution by using the so-called “Table Lookup 
Method”. 
 
The program file, MCMC2.prg (see the next two pages of this handout) applies the Gibbs 
sampler to determine the marginal posteriors for m and θ1, which enables us to obtain Bayes 
estimators for these two parameters. 
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' PROGRAM TO UNDERTAKE BAYESIAN ANALYSIS OF A POISSON PROCESS WITH A 
CHANGE-POINT AT AN UNKNOWN LOCATION IN THE DATA 
' THE COUNT DATA RANGE FROM 0 TO 10 IN VALUE 
 
' THE SECOND PART OF THE PROCESS IS KNOWN TO BE POISSON WITH A MEAN OF 6 
 
' A GAMMA PRIOR IS USED FOR THE FIRST POISSON MEAN, AND A UNIFORM PRIOR IS 
USED FOR THE CHANGE-POINT 
 
!nrep=1000 
' INITIALIZE SOME VALUES 
'******************************** 
rndseed 123456 
' SET THE PRIOR MEAN FOR THETA1 TO BE 6, AND THE PRIOR VARIANCE TO BE 0.06  
(SD = 0.245) 
scalar r1=600 
scalar b1=.01 
scalar t2=6 
 
vector(!nrep) margt1 
vector(!nrep) margm 
vector(10) pm 
vector(10) cusum 
vector(10) mm 
smpl 1 10 
scalar t1=1 
 
scalar m 
smpl 1 10 
series sumofy=@sum(y) 
series sumy=0 
series sumy1 
 
'****************************** 
'START OF THE MCMC LOOP 
for !i=1 to !nrep 
 
' GENERATE A NEW VALUE FOR M USING THE "TABLE LOOKUP METHOD" 
' FIRST CONSTRUCT THE CONDITIONAL POSTERIOR P.D.F. AND C.D.F. FOR M 
 
scalar sum=0 
scalar sump=0 
for !j=1 to 10 
smpl 1 1+!j-1 
series sigy=@sum(y) 
scalar siggy=sigy(1) 
mm(!j)=exp(!j*(t1-t2))*((t1/t2)^siggy) 
sum=sum+mm(!j) 
next 
for !j = 1 to 10 
pm(!j)=mm(!j)/sum 
sump=sump+pm(!j) 
cusum(!j)=sump 
next  
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' NOW IMPLEMENT THE "TABLE LOOKUP METHOD" ITSELF TO ACTUALLY GENERATE 
RANDOM M VALUES FROM THE NON-STANDARD CONDITIONAL POSTERIOR 
DISTRIBUTION 
 
scalar u=@runif(0,1) 
for !j = 1 to 10 
m=!j 
if  u < cusum(!j) then 
!j=10 
endif 
next 
margm(!i)=m 
 
 
' NOW GENERATE THE CONDITIONAL POSTERIOR FOR THETA1  
 
sumy=0 
for !k=1 to m 
sumy=sumy+@elem(y,!k) 
next 
sumy1=sumofy-sumy 
scalar par1=1/(m+1/b1) 
scalar par2=r1+sumy(1) 
 t1=@rgamma(par1, par2) 
margt1(!i)=t1 
 
next 
 
' END OF THE MCMC LOOP 
 
smpl 1 !nrep 
' CONVERT VECTORS TO SERIES TO FACILITATE PLOTS, ETC. 
mtos(margm,postm) 
mtos(margt1,postt1) 
mtos(pm,pms) 
 
' ALLOW FOR "BURN-IN" PERIOD 
‘ IDEALLY, !NREP SHOULD BE MUCH LARGER & WE WOULD HAVE A LARGER “BURN-IN” 
smpl 201 !nrep  
postm.hist 
postt1.hist 
 
 


