Department of Economics

University of Victoria

ECON 546: Themes in Econometrics Term Test, February 2008

Instructor:	David Giles
Instructions:	Answer ALL QUESTIONS , & put all answers in the booklet provided.
Time Allowed:	80 minutes (Total marks = $80 - i.e.$, one mark per minute.)
Number of Pages:	FOUR (A separate set of statistical tables is also provided.)

Question 1:

Write brief notes (and provide diagrams if this helps) to explain what we mean by each of the following:

- (a) The "risk" of an estimator.
- (b) An asymptotically efficient estimator.
- (c) The Neyman-Pearson Lemma.

Total: 24 Marks

Question 2:

Suppose that we have a sample of *n* independent observations from a distribution whose p.d.f. is

$$p(y_i \mid \theta) = \sqrt{(\theta / (2\pi))} [e^{-\theta / (2y_i)} y_i^{-3/2}] \quad ; \qquad y_i > 0 \quad ; \theta > 0.$$

(a) Show that the MLE of
$$\theta$$
 is $\tilde{\theta} = [(1/n)\sum_{i=1}^{n} (1/y_i)]^{-1}$.

7 marks

(b) Derive Fisher's Information Measure for this problem, and its asymptotic counterpart. Suggest a consistent estimator for the latter.

5 marks

2 marks

(c) Carefully state the asymptotic distribution for the MLE of θ .

(d) The characteristic function for this distribution is $\phi_y(t) = \exp\{-\sqrt{-2i\theta t}\}$. Prove that the mean of the distribution is infinite. Would you expect the variance to be finite?

6 marks Total: 20 Marks

Question 3:

The density for a random variable, *Y*, that follows a Rayleigh distribution is:

$$p(y | \theta) = (y / \theta^2) \exp\{-y^2 / (2\theta^2)\}$$
; $y > 0; \theta > 0.$

and the k^{th} moment about the origin is $\mu_k = \theta^k 2^{k/2} \Gamma[1 + (k/2)]$. Here, the Gamma function satisfies the recurrence relationship, $\Gamma(x+1) = x\Gamma(x)$; $\Gamma(1) = 1$ and $\Gamma(1/2) = \sqrt{\pi}$.

(a) If we have *n* independent sample values, show that the MLE of θ is $\tilde{\theta} = \sqrt[+]{(1/2n)\sum_{i} y_i^2}$.

7 marks

(b) Show that the mean of *Y* is $\theta \sqrt{\pi/2}$ and the variance of *Y* is $\theta^2 (4-\pi)/2$. What are the MLE's for the mean, variance *and standard deviation* of *Y*, and what desirable properties will these estimator have?

7 marks

- (c) Derive the Likelihood Ratio Test statistic for testing $H_0: \theta = 1$ against $H_1: \theta \neq 1$. 5 marks
- (d) Suppose that n = 100 and $\sum_{i=1}^{n} y_i^2 = 180$. Apply the LRT. What assumptions have you

made? Is your conclusion sensitive to your choice of significance level?

5 marks Total: 24 Marks

Question 4:

We can estimate a Box-Cox model by MLE by using the following commands within a LOGL Object in EViews:

@ logl II1 yt = $(y^c(1)-1)/c(1)$ xt = $(x^c(1)-1)/c(1)$ res = yt-c(2)-c(3)*xt II1 = $-0.5^{10}(c(4)) + (c(1)-1)^{10}(y)-(res^2)/(2^{10}c(4))$

We can also estimate the model by MLE when the errors are heteroskedastic, with $var(\varepsilon_t) = exp(\delta_0 + \delta_1 \sqrt{Z_t})$, by modifying our LOGL Object to:

@logl II2 yt = $(y^c(1)-1)/c(1)$ xt = $(x^c(1)-1)/c(1)$ res = yt-c(2)-c(3)*xt var=exp(c(4)+c(5)*z^0.5) II2 = $-0.5^{10}(var) + (c(1)-1)^{10}(y)-(res^2)/(2*var)$

The following results have been obtained:

LogL: LOGL01 Method: Maximum Likelihood (Marquardt) Date: 02/14/07 Time: 08:47 Sample: 1 18 Included observations: 18 Evaluation order: By observation Convergence achieved after 28 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.132921	0.194739	0.682560	0.4949
C(2)	0.307780	2.405941	0.127925	0.8982
C(3)	0.764673	0.218204	3.504400	0.0005
C(4)	5.549571	15.12861	0.366826	0.7137
Log likelihood	-135.3922	Akaike info criterion		15.48803
Avg. log likelihood	-7.521791	Schwarz criterion		15.68589
Number of Coefs.	4	Hannan-Quinn criter.		15.51531

LogL: LOGL02 Method: Maximum Likelihood (Marquardt) Date: 02/14/07 Time: 08:49 Sample: 1 18 Included observations: 18 Evaluation order: By observation Convergence achieved after 40 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
C(1)	0.294795	0.637398	0.462497	0.6437
C(2)	0.427104	4.608686	0.092674	0.9262
C(3)	0.659183	0.450980	1.461670	0.1438
C(4)	3.023551	5.238874	0.577137	0.5638
C(5)	0.003591	0.015383	0.233442	0.8154
Log likelihood	-135.2106	Akaike info criterion		15.57896
Avg. log likelihood	-7.511701	Schwarz criterion		15.82628
Number of Coefs.	5	Hannan-Quinn criter.		15.61306

(a) Use a *Likelihood Ratio Test* to test the hypothesis that the errors are homoskedastic.

4 marks

- (b) Use the information in the second output above to apply an alternative test that the errors are homoskedastic. Do you come to the same conclusion as in part (a)? **2 marks**
- (c) Construct two asymptotically valid 95% confidence intervals for C(3), using the information in each of the above outputs separately. Use these intervals to address the statement: "The value of C(3) is the same in both versions of the model."

5 marks

(d) Do you think these tests are likely to be "reliable" in the present context? **1 mark**

Total: 12 Marks

END OF TEST

"Examinations are formidable even to the best prepared, for the greatest fool may ask more than the wisest man can answer."

- Charles Caleb Colton (English clergyman and writer, 1780-1832)