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ECON 546 
 

Monte Carlo and Bootstrap Simulation 
 
 
1, Introduction 
 
Monte Carlo and Bootstrap simulations are rather similar, but they also differ in some important 
respects. In each case, the primary intention is to simulate the true sampling distribution for some 
statistic that is of interest to us, for problems where we cannot determine the form of this 
sampling distribution exactly, by analytic means. This statistic may be an estimator, or it may be 
a test statistic.  
 
In the former case, knowledge of the sampling distribution, via Monte Carlo simulation, will 
enable us to investigate the bias, MSE etc. of the estimator. In the latter case knowledge of the 
sampling distribution, via Monte Carlo simulation, when the null hypothesis is true will enable us 
to determine the extent to which there is any “size-distortion” (i.e., the extent to which the true 
probability of a Type I error differs from what is being assumed, on the basis of the asymptotic 
distribution). When the null is false, the simulated sampling distribution, obtained via Monte 
Carlo methods, will enable to us to explore the power of the test in question, in finite samples. 
 
Bootstrap simulation also provides insights into the sampling distribution, and in the case of 
estimators it again gives us a basis for determining the bias, MSE, etc. In the case of tests. 
Bootstrap simulation provides a simple way of determining the exact p-value for the particular 
data that we are using. 
 
It is important to realize that there are many variants of Monte Carlo and Bootstrap simulation. 
Here, we will just compare the simplest versions of each, and we will use a regression model as 
the vehicle for illustrating what is involved. 
 
2. Monte Carlo Simulation 
 
(a) Estimator Properties 
 
Suppose that want to learn something about the bias and MSE of a particular estimator of the 
slope parameter in the following simple regression model: 
 
  iii xy εβ +=  ;     ],0[...~ 2σε Ndiii       ;     i = 1, 2, …., n          (1) 
 
The steps involved for simulating the sampling distribution of this estimator, and approximating 
its bias and MSE, using Monte Carlo methods, are as follows: 
 

(i) Assume a value for σ2 and ‘n’ and generate a random sample of ‘n’ values for the εi’s 
from the ],0[ 2σN  distribution. 

(ii) Assume a value for β and for the ‘n’ sample values of the regressor, x. 
(iii) Using equation (1), generate an artificial  sample of ‘n’ (random) values for y. 
(iv) Using the actual x and artificial y sample values, estimate equation (1) using the 

estimator of interest, and save the value of the point estimate, )1(β̂ . 
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(v) Repeat steps (iii) and (iv) many, many times, each time saving the )(ˆ jβ values, where 
the superscript ‘(j)’ refers to the jth repetition of the experiment. 

(vi) Look at the distribution of the )(ˆ jβ values you have created (j = 1, 2, ……, N), where  
‘N’ is the number of repetitions. This distribution of values will approach the true 
sampling distribution of β̂ , as ∞→N . 

(vii) The true bias of β̂  is ββ −]ˆ[E , which can be approximated here by the quantity 
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)(ˆ1 ββ , which we might call the “empirical bias”. 

Similarly the MSE of β̂  is ])ˆ[( 2ββ −E , which can be approximated here by the 
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2)( ])ˆ[( ββ , which we might call the “empirical MSE”. 

 
Note: The results you obtain will be specific to the choice of n, σ2,  β and the ‘n’ sample values 
 of the regressor, x, at steps (i) and  (ii) above. Typically, a Monte Carlo experiment will 
 involve an exploration of different choices of these characteristics of the problem, as the 
 sampling distribution of β̂  will usually depend on one or more of these choices. 
 
(b) Test Properties 
 
Similar steps are involved if we want to explore the properties of some test that we perform after 
estimating equation (1). Specifically, to illustrate matters, suppose that we wish to test the 
hypothesis H0: β = β0 vs. HA: β > β0. Let our test statistic be Sn = Sn(y), and suppose that we know 
the asymptotic distribution of this statistic if H0 is true. Then, our test may involve the decision: 
“Reject H0 if Sn > c(α)”, where the critical value, c, is chosen to ensure a significance level of α, if 
the asymptotic distribution of Sn holds. That is,  
 

   ∫
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where (.)0
af  is the density for the asymptotic distribution of Sn when H0 is true. The problem is 

that the finite sample null distribution of the test statistic may be different from its asymptotic 
distribution, and we may not know the form of the finite sample distribution. So, if we use the 
critical value, c(α), based on the asymptotic distribution, it probably will not correspond to a 
significance level of α in finite samples. That is: 
 

αβ ≠∫
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n dyySf )|)((0               (2) 

where (.)0
nf  is the density for the distribution of Sn when the sample size is ‘n’, and when H0 is 

true. The extent to which the inequality holds in equation (2) is a measure of the “size distortion” 
associated with wrongly using the asymptotic critical value. 
 
The steps for a Monte Carlo experiment that would determine the true significance level are as 
follows: 
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(i) Assume a value for σ2 and ‘n’ and generate a random sample of ‘n’ values for the εi’s 

from the ],0[ 2σN  distribution. 
(ii) Assign the value of β0 for β, and assign values for the ‘n’ sample values of the 

regressor, x. 
(iii) Using equation (1), generate an artificial sample of ‘n’ (random) values for y. 
(iv) Using the actual x and artificial y sample values, estimate equation (1) using the 

estimator of interest, and save the value of the test statistic, )1(
nS . 

(v) Repeat steps (iii) and (iv) many, many times, each saving the )( j
nS values, where the 

superscript ‘(j)’ refers to the jth repetition of the experiment. 
(vi) Look at the distribution of the )( j

nS values you have created (j = 1, 2, ……, N), where  
‘N’ is the number of repetitions. This distribution of values will approach the true 
sampling distribution of Sn, as ∞→N . 

(vii) The true significance level (“size”) of the test is the proportion of times that 
)( j

nS values exceed c(α). 
(viii) We can also impute the new finite-sample size-α critical value by looking at the 

distribution of the )( j
nS values, and choosing a “cut-off point” such that a proportion, α, 

of the values exceed this cut-off point. The cut-off point, cn(α), will be the critical value 
that should be used in the finite-sample case. 

 
To determine the ‘raw’ power of the test, based on the (wrong) asymptotic critical value, we 
would repeat the experiment with different values of 0ββ ≠ at step (ii). We would end at step 
(vii), where the rejection rate would now be the ‘power’ of the test. Varying the values of 

0ββ ≠ would allow us to build up a picture of the power curve for the test. 
 
To investigate the (size-adjusted) power of the test, which is really of more interest, we would 
perform the above Monte Carlo experiment to determine the power, but we would replace c(α) by  
the true finite-sample critical value, cn(α). 
 
3. Bootatrap Simulation 
 
The main disadvantage of a Monte Carlo experiment is that the results will be specific to the 
choices that we make for the parameter values, the data values and the sample size. If the 
estimator’s properties, or the properties of the test, vary as these quantities change, a large 
experiment will be needed in order to obtain results with any degree of generality. If we are 
interested in the performance of an estimator or a test, just for some particular situation that we 
are in, then Bootstrap simulation offers a powerful alternative way of proceeding. 
 
(a) Estimator Properties 
 
Again, suppose that want to learn something about the bias and MSE of a particular estimator of 
the slope parameter in the following simple regression model: 
 
  iii xy εβ +=  ;     ],0[...~ 2σε Ndiii       ;     i = 1, 2, …., n          (3) 
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The steps involved for simulating the sampling distribution of this estimator, and approximating 
its bias and MSE, using the Bootstrap method, are as follows: 
 

(i) Estimate equation (3), using our actual (n) sample values for y and x. Let the point 
estimator of β be β̂ , and let the residuals be iii xye β̂−= ; i = 1, 2, ….., n. 

(ii) Draw a (Bootstrap) sample on n values from the (n) ei values, by sampling with 
replacement. Denote the values in this first Bootstrap sample by )1(

ie ; i = 1, 2, ….,n. 
(iii) Generate a sample of ‘n’ artificial yi values: 

 
)1()1( ˆ

iii exy += β . 
(iv) Using the actual x and artificial y(1) sample values, estimate equation (3) using the 

estimator of interest, and save the value of the point estimate, )1(β̂ . 

(v) Repeat steps (ii) to (iv) many, many times, each time saving the )(ˆ jβ values, where the 
superscript ‘(j)’ refers to the jth repetition of the experiment. 

(vi) Look at the distribution of the )(ˆ jβ values you have created (j = 1, 2, ……, N), where  
‘N’ is the number of repetitions. This distribution of values will approach the true 
sampling distribution of β̂ , as ∞→N . 

(vii) The true bias of β̂  is ββ −]ˆ[E , which can be approximated here by the quantity 
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)( ˆˆ ββ , which we might call the “empirical bias”. 

Similarly the MSE of β̂  is ])ˆ[( 2ββ −E , which can be approximated here by the 
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(b) Test Properties 
 
Once again, similar steps are involved if we want to explore the properties of some test that we 
perform after estimating equation (1). Let’s continue to suppose that we wish to test the 
hypothesis H0: β = β0 vs. HA: β > β0. Let our test statistic be Sn = Sn(y), and suppose that we know 
the asymptotic distribution of this statistic if H0 is true. Then, our test may involve the decision: 
“Reject H0 if Sn > c(α)”, where the critical value, c, is chosen to ensure a significance level of α, if 
the asymptotic distribution of Sn holds. That is,  
 

∫
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where (.)0
af  is the density for the asymptotic distribution of Sn when H0 is true.    

 
The steps for a Bootstrap experiment that would determine the true significance level for the test 
with our data and sample size are as follows: 
 

(i) Estimate equation (3), imposing the conditions for the null hypothesis to be true, 
using our actual (n) sample values for y and x. Let the test statistic be Sn, and let the 
residuals be ei = yi – β0xi ; i = 1, 2, ….., n; because the under H0,  β = β0 in this very 
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simple example. (More generally, there would be other coefficients that would be 
estimated.) 

(ii) Draw a (Bootstrap) sample on n values from the (n) ei values, by sampling with 
replacement. Denote the values in this first Bootstrap sample by )1(

ie ; i = 1, 2, ….,n. 
(iii) Generate a sample of ‘n’ artificial yi values: 

 
)1()1( ˆ

iiRi exy += β . 
    where in this very simple example, the restricted estimator that imposes H0 is just 

   0
ˆ ββ =R . 

(iv) Using the actual x and artificial y(1) sample values, estimate equation (3) and save the 
value of the test statistic,  Sn

(1). 
(v) Repeat steps (ii) to (iv) many, many times, each time saving the Sn

(j) values, where the 
superscript ‘(j)’ refers to the jth repetition of the experiment. 

(vi) Look at the distribution of the Sn
(j) values you have created (j = 1, 2, ……, N), where  

‘N’ is the number of repetitions. This distribution of values will approach the true 
sampling distribution of Sn, as ∞→N . 

(vii) The finite-sample Bootstrapped p-value is then the proportion of the N times that the 
Sn

(j) values exceed the original Sn value computed at step (i). 
 
Once again, keep in mind that there are many variations on the Bootstrap, and this is especially 
true when it comes to working with confidence intervals, tests, and p-values. Don’t be surprised if 
you encounter other ways of doing this. 


