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Some Notes on the Negative Binomial Distribution 

 

The negative binomial distribution can be defined in terms of the random variable Y = number of 

failures in independent Bernoulli trials (with probability of “success, p) before the rth success.   

The probability mass function for Y is: 
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The negative binomial distribution gets its name from the following relationship: 
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which defines the usual binomial coefficients in the case of negative integers. 

 

Then, using the usual binomial expansion for a negative power (remember this from high 

school?), namely: 
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it follows immediately that  
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The mean of the distribution can be obtained as follows: 
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In the same way, we can show that 
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so that 
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Some other characteristics of this distribution are as follows: 
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and the characteristic function for the negative binomial distribution is 
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You know that the Poisson is a limiting case of the Negative Binomial distribution. This comes 

about by re-parameterizing the latter distribution in terms of the mean, ]1)/1[( −= prμ , derived 

above. Then the probability mass function for the Negative Binomial distribution becomes 
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Taking the limit as ∞→r , this p.m.f collapses to that for a Poisson-distributed random variable: 
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The Geometric distribution is also a special case of the Negative Binomial distribution. In 

equation (1), set r = 1: 
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