Stability of Transition Metal Complexes

(continued, see 7.12-7.13 H&S 3rd Ed.)

The 'chelate effect': observation that chelating ligands form more stable complexes (higher β values) than do an equivalent number of related monodentate ligands

Eg.	Ion L		Complex	log β
	$\begin{array}{c} Cu^{2+} \\ Cu^{2+} \end{array}$	NH ₃ en	$[Cu(NH_3)_4]^{2+}$ $[Cu(en)_2]^{2+}$	12.6 20. 6
	Ni ²⁺ Ni ²⁺	NH ₃ en	$[Ni(NH_3)_6]^{2+}$ $[Ni(en)_3]^{2+}$	8.7 18.0

Why are chelate complexes preferred?

 $[Cu(NH_3)_4]^{2+} + 2 en \implies [Cu(en)_2]^{2+} + 4 NH_3$

 $\Delta G^{\circ} = -RTlnK = \Delta H - T\Delta S$

 $lnK = -\Delta H/RT + \Delta S/R$ (Eyring Equation)

plot of lnK vs. 1/T gives straight line with slope $-\Delta H/R$ and intercept $\Delta S/R$

 Δ H is dependent on the nature of the ligand and metal as well as ligand size (see Hard-Soft Acid-Base section):

but here NH_3 and en $(H_2NCH_2CH_2NH_2)$ are very similar to one another so ΔH is unlikely to vary much

What about the other term in the equilibrium equation?

Will ΔS *change much in the reaction shown above?*

- Yes, we are going from a total of 3 particles to 5 as we displace two NH_3 for every en. This is a significant positive change in entropy and it makes ΔG negative for this reaction.
- Similarly, chelate ligands are far less likely to be displaced by water molecules, even in cases where water is a better ligand for the metal than the particular donor in the chelate, because binding 6 waters causes an unfavourable decrease in entropy.

Remember: the Chelate Effect is ENTROPY driven!!

The effect is even more pronounced for:

• ligands capable of forming multiple chelate rings

Eg. EDTA complexes

 $[M(H_2O)_6]^{n+} + EDTA^{4-} = [M(EDTA)]^{(n-4)} + 6 H_2O$

Μ	log K ₁ for M(EDTA)				
Ag^+	7.3				
Ca^{2+}	10.8				
V^{2+}	12.7				
Fe ²⁺	14.3				
C 0 ²⁺	16.1				
Ni ²⁺	18.6				
Cu ²⁺	18.7				
V^{3+}	25.9				
Fe ³⁺	25.1				
Co ³⁺	36.0				

- macrocycles ('macrocyclic effect'): macrocyclic complexes are more stable (higher β) than linear polydentate ligands OR monodentate ligands of similar type
 - besides entropy favouring a polydentate ligand over an equivalent number of monodentate donors, macrocycles are already tied into rings so there are fewer degrees of conformation freedom to lose on coordination
 - this effect is sometimes referred to as 'preorganization'

$$\log K_1 = 23.9$$

 $\log K_1 = 28.0$

2,2,2-crypt (a cryptand ligand)

Hard-Soft Acid-Base Theory (Pearson)

• a *qualitative* observation that certain metals bind with certain donors preferentially:

Hard (Class a) metals: high Q/r ratio, polarizing

s block, early to middle d block, f block

prefer

Hard donors: electronegative, not easily polarized

F, O, N, Cl, OH⁻, π-donors

Soft (Class b) metals: low Q/r ratio, not very polarizing

zero oxidation state or late d block, p block metals

prefer

Soft donors: medium electronegativity, easily polarized, π -acceptors

I, S, P, H⁻, CO, alkenes

Intermediate donors: Br⁻, N₃⁻, py

Egs.

 $[Fe(H_2O)_6]^{3+} + X^- \implies [Fe(H_2O)_5X]^{2+} + H_2O$ $[Hg(H_2O)_4]^{2+} + X^- \implies [Hg(H_2O)_3X]^+ + H_2O$

log K ₁									
$\mathbf{M}^{\mathbf{n}^+}$	\mathbf{F}^{-}	Cl	Br⁻	I-					
Fe ³⁺	6.0	1.4	0.5	?	HARD				
Hg ²⁺	1.0	6.7	8.9	12.9	SOFT				

Qualitative but useful:

- usually reliable in predicting thermodynamics of substitution reactions (but NOT the kinetics)
- correctly predicts that behaviour will be linked to oxidation state – higher OS are harder and most commonly found with O, N and F ligation while zero valent metal centres strongly prefer soft ligands like CO, alkenes and I⁻