Radioactivity

Raw Radiation

↓

Decay Rate

Curie (Ci)
3.7 x 10¹⁰ disint/s

Becquerel (Bq)
1 disint/s

Energy Absorbed

Absorbed Dose

Gray (Gy)

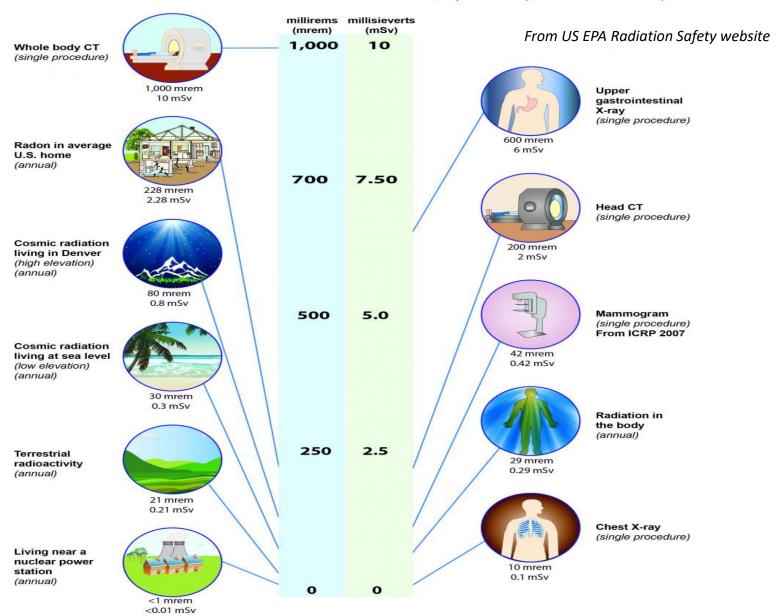
J/kg

Rads = 0.01 Gy

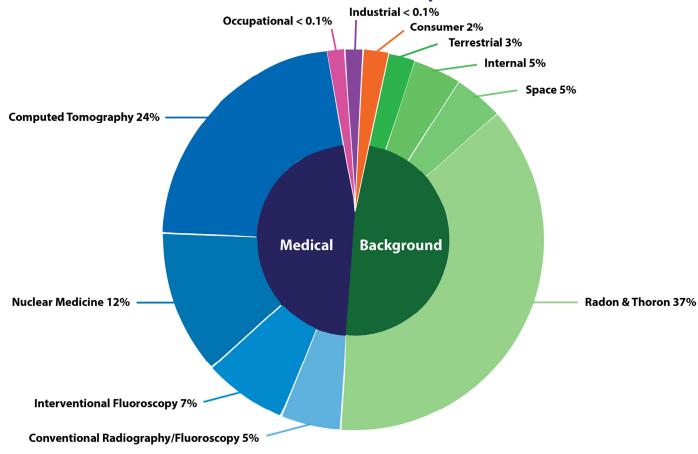
Related: Roentgen (Rg) C/kg **Damage Done**

Effective Dose

Sieverts (Sv)


weighted for damage: 1 for β , γ ; 20 for α

Rem


= 0.01 SV

RELATIVE DOSES FROM RADIATION SOURCES

All doses from the National Council on Radiation Protection & Measurements, Report No. 160 (unless otherwise denoted)

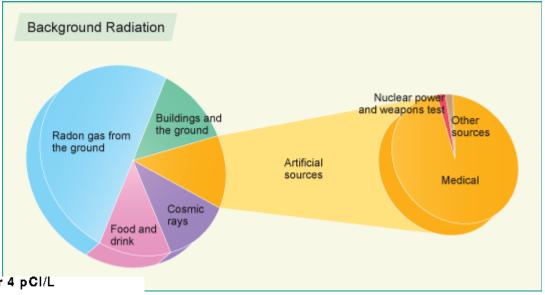
Sources of Radiation Exposure

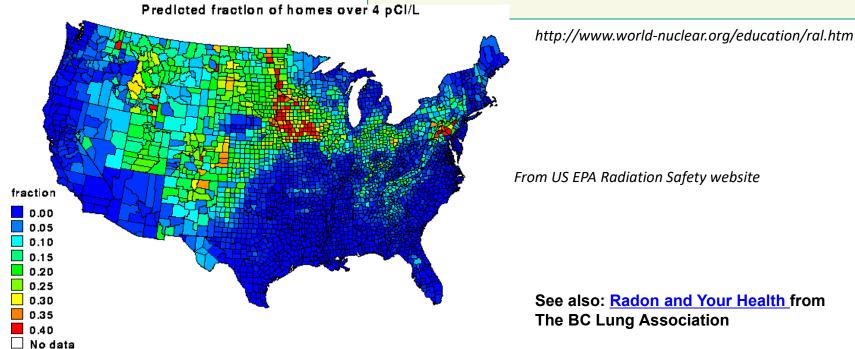
4	Average Ann	ual Radiation [Oose								
Sources	Radon & Thoron	Computed Tomography	Nuclear Medicine	Interventional Fluoroscopy	Space	Conventional Radiography/ Fluoroscopy	Internal	Terrestrial	Consumer	Occupational	Industrial
Units mrem (United States) mSv (International)	228 mrem 2.28 mSv	147 mrem 1.47 mSv	77 mrem 0.77 mSv	43 mrem 0.43 mSv	33 mrem 0.33 mSv	33 mrem 0.33mSv	29 mrem 0.29 mSv	21 mrem 0.21 mSv	13 mrem 0.13 mSv	0.5 mrem 0.005 mSv	0.3 mrem 0.003 mSv

(Source: National Council on Radiation Protection & Measurements, Report No. 160)

Annual Radiation Dose

Adult: 50,000 μSv Considered safe

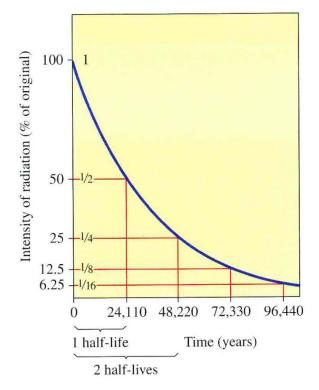

Chemistry in Context 6th Edition, ACS, McGraw-Hill


Sources of Radiation				
1. Cosmic radiation	p. 121 171			
a. Sea level (U.S. average)	260			
b. Additional dose if you are above sea level				
up to 1000 m (3300 ft) add 20 μSv	20			
1000 to 2000 m (6600 ft) add 50 μSv				
2000 to 3000 m (9900 ft) add 90 μSv	= Gangan			
3000 to 4000 m (13,200 ft) add 15 μSv				
4000 to 5000 m (16,500 ft) add 21 μSv				
2. Building material(s) used in your dwelling				
Stone, brick or concrete add 70 µSv				
Wood or other add 20 µSv	20			
3. Rocks and soil	460			
4. Food, water, and air (K and Rn)	2400			
5. Fallout from nuclear weapons testing	10			
6. Medical and dental X-rays				
a. Chest X-ray, add 100 μSv each	0			
b. Gastrointestinal tract X-ray, add 5000 μSv each	0			
 c. Dental X-rays, add 100 μSv each 	100			
7. Airplane travel				
5-hour flight at 30,000 feet, add 30 µSv/flight	300			
8. Other				
a. Live within 50 miles of a nuclear plant, add 0.09 μSv	0.09			
b. Live within 50 miles of a coal-fired power plant, add 0.3 μSv	0.3			
c. Use a computer terminal, add 1 μSv	1			
d. Watch TV, add 10 μSv	10			
e. Smoke one pack of cigarettes/day, add 10,000 μSv	0			
Total Annual Radiation Dose	3581			
U.S. annual average = 3600 μSv				

^{*}Sample calculation is for an adult nonsmoker living in the Midwest. Sources: U.S. Environmental Protection Agency, American Nuclear Society.

Radon gas

Leading cause of lung cancer in non-smokers



Nuclear waste

Half-life is the time it takes for the radioactivity to decay by $\frac{1}{2}$.

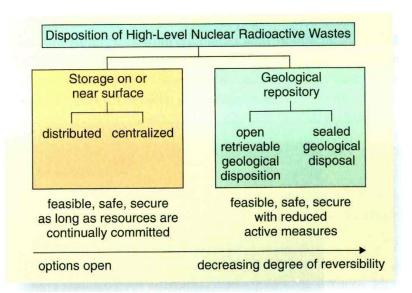
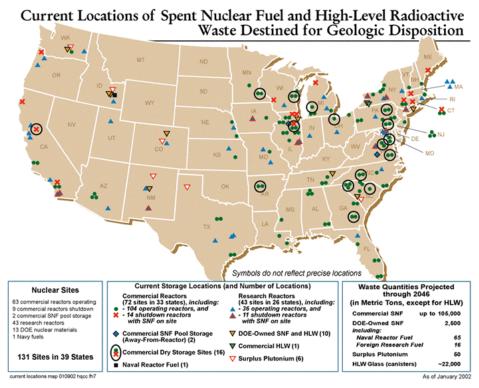

Decay of Pu-239

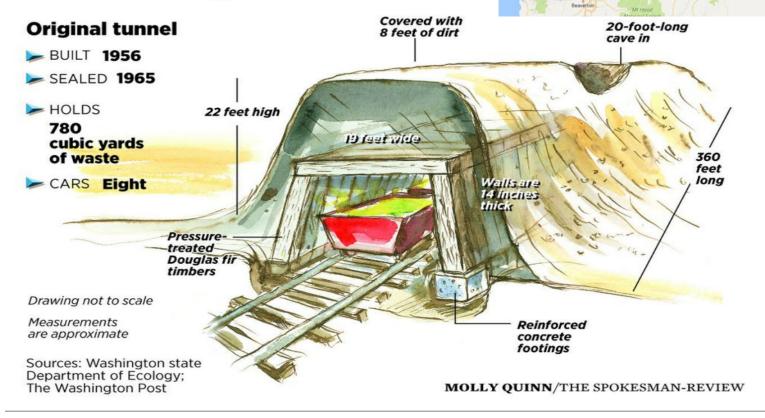
Table 7.5	Half-Lives for Selected Radioisotopes Half-life $(t_{1/2})$				
Radioisotope					
uranium-238	4.5×10^9 years				
potassium-40	1.3×10^9 years				
plutonium-239	24,110 years				
carbon-14	5715 years				
cesium-137	30.2 years				
strontium-90	29.1 years				
thorium-234	24.1 days				
iodine-131	8.04 days				
radon-222	3.82 days				
plutonium-231	8.5 minutes				
polonium-214	0.00016 seconds				

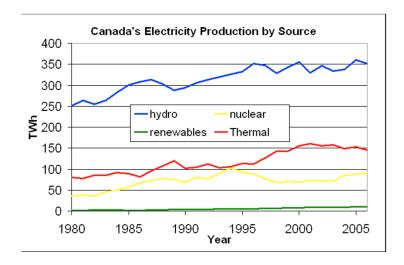
Chemistry in Context 6th Edition, ACS, McGraw-Hill

Options for nuclear waste disposal

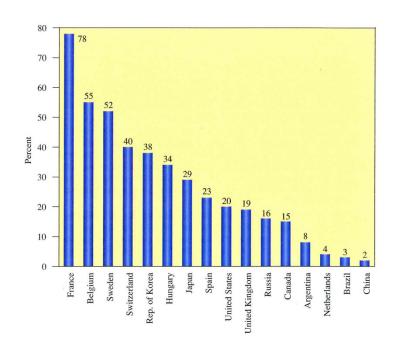


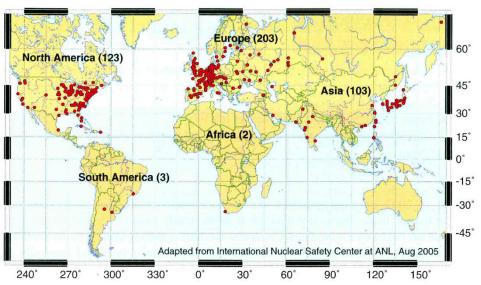
Chemistry in Context 6th Edition, ACS, McGraw-Hill


wikipedia


From democraticunderground.com

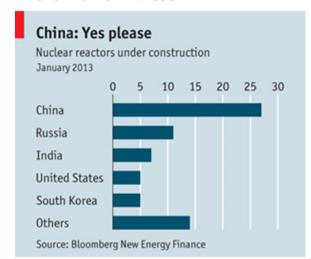
Tunnel collapse renews safety concerns about Hanford nuclear site in Washington state THE ASSOCIATED PRESS May 10, 2017 (Headline in Vancouver Sun)

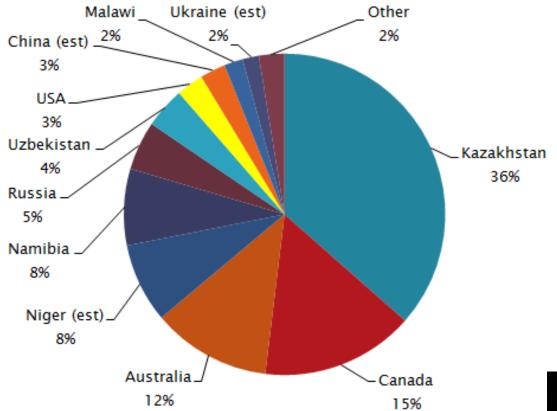

PUREX storage tunnel



See also: https://ecology.wa.gov/Waste-Toxics/Nuclear-waste/Hanford-cleanup/PUREX

wikipedia




Figure 7.10 Chemistry in Context 6th Edition, ACS, McGraw-Hill

Number of reactors in operation worldwide, as of December 2005. Some sites have more than one reactor.

Source: http://www.insc.anl.gov/pwrmaps/map/world_map.php

From businessinsider.com

World Uranium Mining Production 2012

Uranium glass

