VITAMINS

OIL (FAT) SOLUBLE = A, D, E, F, K WATER SOLUBLE = B, C.

VITAMIN A = RETINOL, derived in body from β -carotene (orange pigment in carrots)

Sources: fish liver oils, liver, apricots/peaches

Citral from lemon grass can be converted to Vitamin A or carotene.

Function of Vitamin A: protects against invading bacteria

- Increases mucus secretion to trap bacteria
- prevents night blindness
- keeps skin healthy
- keeps tear ducts healthy

EXCESS:

- irritability, dry peeling skin, pressure in head
- severe liver injury if >25000IU. i.e 5x normal dose

TERATOGENIC: birth defects of eyes, ears, heart

pregnant women should avoid liver

trans-RETINOIC ACID; RETIN-A; TRETINOIN

 Causes the skin to peel, so is used in cosmetics as anti-acne agent, anti-skin damage, anti-wrinkle.....OK in limited doses topically

Isotretinoin = cis-retinoic acid = ACCUTANE

- Orally for severe acne, BUT it has severe side effects and is a TERATOGEN – require two pregnancy tests
- huge number of side effects, see:
 http://www.nlm.nih.gov/medlineplus/druginfo/medmaster/a681043.html

see retinol structure,
$$-CH_2OH \rightarrow -COOH$$

rest

rest

rest

cooh

cooh

trans-
cis-

VITAMIN D (calciferol) 400 IU = $10\mu g$ of Vit D3

US = $5-10\mu g$; UK $5-7\mu g$; CAN $3-5\mu g$

high end for pregnant females and children

7-dehydrocholesterol

Vit D3 cholecalciferol

Sources: Pre-vitamin in cereals, bread, milk

sunlight converts it to active vitamin

Function: Vitamin D controls Ca and P absorption from foods, metabolism, transport of Ca in bloodstream and formation of

bones.

DEFICIENCY:

soft, deformed bones = RICKETS, not enough $Ca_3(PO_4)_2$ to stiffen them; poor teeth.

Too much?

- Stiffening of joints
- Headache, nausea

Figure 17-9 A deficiency of vitamin D (calciferol) combined with a lack of sunlight causes rickets in children. As a result of abnormal bone growth caused by a disturbance in calcium metabolism, children develop bow legs and knock knees.

VITAMIN E

α -TOCOPHEROL

$$CH_3$$
 $CH_2CH_2CH_2CH_3$
 CH_3

THE FAT ANTI-OXIDANT

myths: "sexual potency vitamin"; "anti-aging vitamin" (in rats)

Function: Prevents oxidation of fats, maintains red blood cell membranes; necessary for proper functioning of: genitals ("sexual potency"), lungs, liver, kidneys.

Sources: grains, fats (meats), eggs, nuts, salmon (oily fish)

DEFICIENCY: edema (water under skin), anaemia, muscular dystrophy

VITAMIN K

$$\begin{array}{c}
O \\
O \\
O
\end{array}$$

$$\begin{array}{c}
H \\
n \\
= 5-13
\end{array}$$

Function: Synthesis of prothrombins (blood coagulants)

DEFICIENCY: haemorrhages, slow blood clotting

RDA ~ 80mg/day

EXCESS: clotting

Sources: Found in leafy veg like cauliflower, broccoli

ANTI-VITAMIN K: dicoumarol (clover, alfalfa) or warfarin

Dicoumarol [Dicumarol]

Warfarin

THE WATER SOLUBLE VITAMINS

THE B-GROUP: co-enzymes in growth and energy production

B1 THIAMINE RDA = 1.5mg

DEFICIENCY: Beri Beri, muscular atrophy, nervous disorders

Beri Beri = laboured breathing, enlarged heart, mental confusion, paralysis of arms/legs

SOURCES: grain skins, soybeans, bran, peanuts, meats, liver, eggs,

B2 RIBOFLAVIN RDA = 1.2-1.8mg

Function: metabolism of fats and proteins

DEFICIENCY: skin problems, fatigue, stops tissue growth

Sources: liver, milk, eggs, leafy veg

B3 NIACIN RDA 13-20mg

Function: metabolism and synthesis of carbs, fats, proteins, (alcohol)

Deficiency: Pellagra (dermatitis, dementia), stunted growth

Sources: yeasts, liver, peanuts, whole grains, potatoes

Corn is deficient in niacin, so people in SE USA used to get pellagra

BUT excess Niacin causes liver, muscle and eye damage

B9 FOLIC ACID

RDA = 0.15-0.4 mg

Preg F = 0.4-0.8 mg

Function: coenzymes of growth, especially red blood cells

Deficiency: anaemia, fatigue, poor appetite, forgetfulness

Sources: Liver, whole grains, yeast, asparagus, spinach (green veg)

Controversies? For pregnant women, it protects baby from **spina bifida** - but other studies suggest increased chance of twins with risk of cerebral palsy: which risk is greater?

US has made it a *compulsory additive in cereals:* reduces blood homocysteine, reduces heart disease

http://www.hc-sc.gc.ca/iyh-vsv/med/folic-folique_e.html http://www.marchofdimes.com/professionals/690_1403.asp

B12 COBALAMIN RDA = $6 \mu g/day$

VITAMIN USRDA* STRUCTURE AND NAME

B₁₂ 6 μg OH OH

Metal-carbon bond

Function: synthesis of nucleic acids, red and white blood cells, RNA to DNA conversion

Deficiency: pernicious anaemia (can't absorb vitamin from food, need to have injected), jaundice, poor cell division,.....

Sources: Not in plants, only in meat, clams, oysters, egg yolks

http://health.yahoo.com/ency/healthwise/hw65706;_ylt=Anls3yh6DKWemgFCu6y_gGOmxbAB

Vitamin C ASCORBIC ACID

RDA = 50-60 mg/day

Function: ANTI-OXIDANT, scavenges free radicals, maybe involved in synthesis of interferon, prevents invading viruses, hence VIT C - COLD connection

Sources: all citrus fruits, tomatoes, peppers, potatoes...

Deficiency: Scurvy, weight loss, damaged liver, swollen legs,...

Need: ~ 10mg/day to prevent scurvy (term 'limeys')

Not stored in body long and excess excreted (>200mg/day)

FOOD ADDITIVES

The GRAS list: 'Generally Regarded as Safe' List

Anti-caking agents: Ca silicate SiO₂ Iron ammonium citrate

Acids/bases/buffers: acetates, citrates (left), lactates, phosphates, tartarates, sorbates (middle)

Emulsifiers (surfactants): mono- and diglycerides of fatty acids alcohols like sorbitol (right):

Preservatives: benzoates, propionates, sorbates, 'parabens'

Anti-oxidants: ascorbic acid, BHA, BHT,

lecithin, SO₂ and sulphites

Flavour enhancers: MSG, maltol

Sweeteners: Aspartame, Mannitol, Sorbitol

Flavourings: amyl butyrate (pear), carvone (spearmint), citral (lemon), ethyl vanillin (vanilla), geraniol (rose), methyl anthranilate (grape), methyl salicylate (wintergreen), eugenol (allspice)

PRESERVATIVES: prevent bacteria and oxidation dry and/or use salt/sugar OR add a BACTERICIDE

SODIUM BENZOATE ≤ 0.1% Used under acidic conditions

pie fillings, jams, syrups, pickles, relishes, olives, margarines, jellies, nonalcoholic beverages (found naturally in cranberries)

SODIUM PROPANOATE (PROPIONATE) ≤0.3%

CH₃CH₂COO⁻ Na⁺ Used under non-acidic conditions bread, chocolate, cheese, pie-crusts (found naturally in Swiss Cheese)

ACTION OF BOTH: coats cell walls, stop passage of nutrients in or out, microbe dies from starvation

BACTERIOSTATS (FUNGISTATS) Prevent the growth, don't kill

SORBIC ACID AND THE SORBATES

COOH (or COO- K+)

used in breads, muffins, cheese, paint, rubber, fish products, carbonated drinks...

rbates s han

Figure 17-13 When sorbates are added to bread, molds grow much more slowly than when they are absent.

PARABENS are used more in Europe

HO—COOR
$$NH_2$$
—COOH

R = methyl, propyl,... PABA

eg propylparabens

probably get incorporated in to Folic acid instead of PABA

very widely used in cosmetics: lipsticks, under-arm deodorants

PRESERVATIVES FOR MEATS:

NITRITES sodium nitrite $NaNO_2 \le 200 \text{ ppm}$

 LD_{50} 0.18 g/kg (> 20 g !! for me)

Used: in processed meats like wieners, bologna, salami...

NO₂ inhibits botulinus bacteria: botulism toxin and also reacts with myoglobin in meat to give a bright pink color

No nitrite, meat turns grey over time (no harm) need about 10x amount for pink than for botulinus inhibition

Nitrates (NaNO₃) present in a wide variety of foods and water, also can produce NO₂- in presence of reducing bacteria

Controversy:

In the stomach: HNO₂ forms, can react with amines (R₂NH) to produce NITROSAMINES, R₂N-NO

Nitrosamines are highly carcinogenic (to rats and other animals)

Is this a major risk? Probably NOT:

risk from botulism is much higher and food contains some nitrates naturally (lettuce, spinach, beetroot, celery ~1000 ppm; peas, beans, onions ~200 ppm and beer ~25 mg per beer)

Average daily intake ~100 mg of nitrates, which on reduction gives 5 μ g/mL of nitrite in saliva and about 5 mg of nitrite in the gut!

FRUITS SO₂ (sulfur dioxide) gas OR sulphite salts

Used: in dried fruits, wines, syrups, jellies, dehydrated potatoes acts both as a bleach and to kill bacteria

IRRADIATION

 60 Co γ -emitter: produce hydroxyl free radicals that kill most microorganisms and inhibit many enzymes, prevent sprouting and ripening

Figure 7-15 Strawberries irradiated with gamma rays from radioactive isotopes are still fresh after 15 days storage at 4°C (right). Strawberries stored under the same conditions but not irradiated are molded (left). (International Atomic Energy Agency)

C. Bohne/D. Berg Copyright 2011-19 – For use in the Uvic Chem 400 course only – Spring 2019

ANTI-OXIDANTS: many are phenols

used in foods containing oils and fats, up to 0.02% (egs. Chips, cereals, breads)

FLAVOURS: FRUITY are all esters, same as natural ones

FLAVOUR ENHANCERS

Potentiators: no taste but enhance the flavour of others MSG Monosodium glutamate (0.2-0.9%)

Sodium salt of the natural amino acid from fermenting sugar beet molasses:

used in meats, veg products, soya sauce, oriental food

Other options:

inosinic acid, used as sodium salt

$$\bigcup_{O}^{O}$$

maltol (from pine needles)

COLORS

FD&C (Food, drugs and cosmetics) approved

purely for show: ~ 30 approved as list shrinks

300A50 COLOURS

highly conjugated: absorb visible light 400-700 nm we see the complimentary color

eg. β-carotene absorbs blueviolet so we see orange-red

HO
$$SO_3Na$$

N=N NaO_3S

NaO₃S

NaO₃Na

NaO₃S

NaO₃Na

Red-2

Blue-2

Na SO₃

$$N (Et) CH2 - SO3N1$$

$$N (Et) CH2 - SO3N2$$

$$N (Et) CH2 - SO3 N3$$

Fluorescent Red-3

Fluorescent Green-3

Older coal tar dyes modified with water solubilizing groups: SO_3^- , COO^- or OH so that dye is excreted without metabolizing

Fat soluble dyes have been eliminated (carcinogenic): egs. butter yellow, yellows 3&4, orange 1, reds 2&4, violet 1

Sudan Red G (an azo dye) caused a large food recall in UK in 2005:

No longer used - carcinogenic

Cochineal (Carminic acid)

from dried scale insects of Mexico,

Peru and the Canary Islands:

highly valued dye in colonial Mexico;

farmed in Australia

ADDITIVES TO CONTROL ACIDITY

Fruit acids: citric, tartaric, malic and lactic acid used in fruit drinks

Phosphoric acid (H₃PO₄) is used in 'cola' type drinks

In candy manufacture, acid converts sucrose to softer invert sugar:

LOW ACID gives hard (crystalline) candies

HIGH ACID gives softer, chewy (less crystalline) candies

'Invert sugar' = hydrolysis of sucrose to glucose and fructose

BUFFERS

usually sodium or potassium salts of di or tri-acids eg. potassium acid tartrate:

ANTI-CAKING AGENTS: prevent moisture from forming lumps 1% magnesium silicate in salt sodium aluminosilicate in non-dairy creamer silicon dioxide (silica) in soups

How to measure components of foods – analytical chemistry

Indicator displacement assay

Figure 1. Traditional chemosensing assay (A) and indicator displacement assay (B).

Figure 2. Neutral structures of 1, 2, and 3.

Umali, Anslyn and Wright - 2010 - J. Chem. Ed. 87, 832

Figure 3. Student data from the spectrophotometric titration with standard citric acid. The absorbance maximum of the indicator, **2**, is shifted when it is displaced from the binding cavity of the host, **1**, by citric acid, **3**.

Figure 4. Calibration curve obtained from the spectra in Figure 3.

Table 3. Students' Citric Acid Concentrations of Commercially Available Beverages

beverage	av concn of citric acid/mM
Pepsi (control)	-0.559 ± 0.150
Sprite	6.33 ± 0.67
Mountain Dew	8.53 ± 1.00
HEB brand lemon-flavored water	12.8 ± 1.5
HEB brand orange-flavored water	11.7 ± 0.5

Umali, Anslyn and Wright – 2010 – J. Chem. Ed. 87, 832