Organometallic Catalysis in Industry

Figure 9-1
Reaction Coordinates for a Catalyzed and Uncatalyzed Chemical Reaction

ΔG^\ddagger

S: Substrate P: Product C: Catalyst
S-C: Substrate-Catalyst Complex P-C: Product-Catalyst Complex
<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Homogeneous</th>
<th>Heterogenous</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Catalyst composition and</td>
<td>Discrete molecules with well-defined</td>
<td>Nondiscrete molecular entities;</td>
</tr>
<tr>
<td>nature of active site</td>
<td>active site</td>
<td>active site not well-defined</td>
</tr>
<tr>
<td>2. Determination of reaction</td>
<td>Relatively straightforward using standard</td>
<td>Very difficult</td>
</tr>
<tr>
<td>mechanism</td>
<td>techniques</td>
<td></td>
</tr>
<tr>
<td>3. Catalyst properties</td>
<td>Easily modified, often highly selectiv,</td>
<td>Difficult to modify, relatively</td>
</tr>
<tr>
<td></td>
<td>poor thermal stability, mild reaction</td>
<td>unselective, thermally robust,</td>
</tr>
<tr>
<td></td>
<td>conditions</td>
<td>vigorous reaction conditions</td>
</tr>
<tr>
<td>4. Ease of separation from product</td>
<td>Often difficult</td>
<td>Relatively easy</td>
</tr>
</tbody>
</table>
Some terminology:

Catalytic cycles: a circular path meant to show *productive reactions*, in order, that lead from the catalytically active species and its reaction with a substrate through to product elimination and regeneration of the catalyst.

Turnover number: number of times a cycle is completed before the catalyst dies. Typically this is > 1000; a stoichiometric reaction has a TON of 1.

Turnover rate or frequency: the rate at which a cycle is completed. This can be reported in many ways but it is usually in mol product per mol catalyst per time. Eg. a good ethylene polymerization catalyst might have a turnover rate of 5000 kg polyethylene per mol of catalyst per hour.

Resting State: this is the stable, and usually inactive, form of the catalyst when no substrate is provided or when it has been used up. Eg. with a coordinated solvent molecule occupying the active coordination site.

Pre-catalyst: the stable compound put into the reactor; it must be transformed *in situ* into the active species. Eg. Cp₂ZrCl₂ in Z-N polymerizations where MAO is the *activator*.
So why transition metals?

- **wide range of bonding modes**
 - σ and π bonds
 - many valence electrons

- **wide choice of ligands**
 - ionic or neutral

- **tunable properties**
 - choice of metal
 - electronic and steric effects of ancillary ligands

- **variable coordination numbers**
 - 4 and 5 or 5 and 6 coordinate geometries accessible for same metal

- **variable oxidation states**
 - ox. states separated by 2 units facilitate oxidative addition and reductive elimination reactions
Tolman’s rules: (really only apply to middle and late T.M.)

- Diamagnetic organometallic complexes may exist in *significant concentration* only if the metal’s valence shell contains 16 or 18 electrons. A significant concentration is one that can be detected spectroscopically or kinetically.

- Organometallic reactions, including catalytic ones, *proceed by elementary steps* involving only intermediates with 16 or 18 valence electrons.

As a corollary, there is an old saying in catalysis that says:

> ‘If you can isolate it, then it isn’t the active catalyst’

This statement has been shown to be untrue in many catalytic systems in more recent work.
Industrial Importance of Homogeneous Catalysis

<table>
<thead>
<tr>
<th>Reaction and Products</th>
<th>Ann. Production World (2015)</th>
<th>10^3 metric tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Olefin additions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adiponitrile (for nylon)</td>
<td></td>
<td>1,200</td>
</tr>
<tr>
<td>Olefin polymerizations (all types)</td>
<td></td>
<td>100,000+</td>
</tr>
<tr>
<td>Carbonylations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxo alcohols (hydroformylation)</td>
<td></td>
<td>2,000</td>
</tr>
<tr>
<td>Acetic acid/anhydride (from MeOH)</td>
<td></td>
<td>2,500</td>
</tr>
<tr>
<td>Olefin oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetaldehyde</td>
<td></td>
<td>1,250+</td>
</tr>
<tr>
<td>Propylene oxide</td>
<td></td>
<td>7,500</td>
</tr>
<tr>
<td>Alkane and arene oxidations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terephthalic acid and esters</td>
<td></td>
<td>5,000+</td>
</tr>
<tr>
<td>Adipic acid (for nylon)</td>
<td></td>
<td>1,200+</td>
</tr>
</tbody>
</table>
1. Isomerization of Alkenes

- often unwanted side reaction but can be useful in some cases
- most metal hydride species will do this to some extent
2. Hydrogenation

Most important for alkenes: *usually* oxidative addition / reductive elimination sequences

Wilkinson’s catalyst is the original system and most famous but many are now known

- selective for $\text{C}=$C over C=O and CN
- does not scramble H and D
- exclusively syn H_2 addition (see e.g. below)
- commercially available
Wilkinson’s catalyst:
Insertion is turnover limiting

Scheme 9.7
Mechanism of Hydrogenation
with Wilkinson’s Catalyst

Key Steps: a, b, c, d, e
L = PPH₃; Solv: EtOH, THF
Many cationic hydride complexes are also used: one example is $[\text{Rh}(\text{dppe})(L)_2]^+$.
Asymmetric hydrogenation:

Chiral chelating ligands result in preferential delivery of H₂ to one enantiotopic face of the alkene

Chiral chelating phosphines are among the most popular
Some examples of asymmetric hydrogenation of alkenes using a related Ir catalyst:

\[
\text{L} = \text{ligand in Figure 15.12}
\]
Asymmetric transfer hydrogenation of ketones: asymmetric Meerwein-Pondorff-Verley reduction

Reaction occurs with Lewis acids too: alumina, lanthanide and group 4 metal complexes

No oxidation state change for the metal
3. Hydroformylation (Oxo process)

- Formally addition of formaldehyde across a double bond
- Discovered by BASF by Otto Roelen using Co catalysts
- Worldwide scale: about 7 BILLION kgs per year
- **HCo(CO)_4** catalyst:
 conditions 110-180 °C / 200-300 atm

- **linear/branched** ratio is about 3:1
- internal alkenes isomerize to terminal so only α or β aldehydes formed
- **problem**: catalyst loss due to volatility of HCo(CO)_4 and Co_2(CO)_8
- HRh(CO)(PPh₃)₂ allows lower T (100 °C) and P (6 atm)
- linear to branched ratio: > 10:1
- hydrogenation is much slower under the conditions used and does not compete as a side reaction.
4. Monsanto Acetic Acid Process (carbonylation of MeOH)

- acetic acid for industrial uses: vinyl acetate, cellulose acetate, pharmaceuticals, dyes and pesticides.
- Monsanto process dominates the market but older methods such as the oxidation of ethylene via acetaldehyde are still practiced.
- conditions: 180 °C / 30-40 atm / 10⁻³ M catalyst
5. Alkene Oxidations: the **Wacker** process

- used to prepare acetaldehyde for conversion to acetic acid
- replaced dangerous hydration of acetylene in 1950's
- now largely superceded by Monsanto process
- ultimate oxygen source is air although the reaction chemistry occurs solely at Pd
Some debate over whether inter- or intramolecular attack occurs.
Evidence for intramolecular attack from labelling studies:

\[
Pd(MeCN)_2(BF_4)_2 \text{ (5 mol %)} \quad (S,S)-\text{ip-boxax} \quad [\text{Pd/L = 1/2}] \\
\text{Benzoquinone (4 equiv.)} \\
\text{MeOH, 20 °C, 4 h} \\
82\% \text{ yield} \\
A/B/C/D = 33/33/23/11
\]

\[
\text{Pd(II) syn-oxypalladation} \\
\text{β-H elimination} \\
\text{H-Pd addition}
\]

Scheme 16.32
Oxidative Amination: closely related to Wacker Chemistry
6. Hydrofunctionalization of Alkenes

- **Hydroamination** \(H-NR_2 \) (covered earlier)
- **Hydrozirconation** \(H-ZrX_3 \) (covered earlier)
- **Hydrocyanation** \(H-CN \)
- **Hydrosilylation** \(H-SiX_3 \)
- **Hydroboration** \(H-B(OR)_2 \)
General mechanism is pretty much the same for all later transition metals:
Hydrocyanation

- By far the most common catalysts are Ni⁰ complexes like NiL₄ or chiral variants, Ni(L₂*)₂
- Used industrially to produce adiponitrile for nylon synthesis and one route to Naproxen (tradename: Alleve)
Hydrosilylation

- Usual catalysts are Pt\(^0\) complexes like Speier’s and Karsted’s catalysts (below).
- Catalyst loadings are incredibly low (highly active catalysts): \(10^{-5}\) mol\% common.
- Still controversy over whether it is actually colloidal Pt that is the catalyst (induction period?)
- **Industrial uses**: polysiloxanes for caulks, gaskets, coatings, etc.

Speier’s catalyst: \(\text{H}_2\text{PtCl}_6\)

Karsted’s catalyst: widely used Pt\(^0\) but still induction period
Asymmetric variants used in organic synthesis

\[
\ce{R = C=CHCH2R \ + \ HSiCl3 \xrightarrow{[Pt]} \ Cl_3SiCH=CHCH2R \xrightarrow{i) \ EtOH / NEt3} \ HOCH=CHCH2R} \xrightarrow{ii) \ H_2O_2, KF, KHCO_3} \ %ee > 95%
\]

+ PtL₄
σ-bond metathesis alternative: no oxidative-addn / red. elim
Hydroboration

- Late transition metal catalysts (Rh, Ir, Pd, Pt, Ni) by oxid. add. / red. elim. AND early transition metals and lanthanides by σ-bond metathesis
- Mostly used in organic synthesis for regio- and stereoselective alcohol formation

\[
\begin{align*}
\text{ArCH} = \text{CH}_2 & \xrightarrow{1. \text{ HBcat. catalyst}} \text{ArCH}_3 + \text{ArCH} \text{CH}_3 \\
& \xrightarrow{2. \text{ H}_2\text{O}_2/\text{OH}^0} \text{ArCH}_3 + \text{ArCH} \text{CH}_3
\end{align*}
\]

Catalyst

- \(\text{RhCl(PPh}_3)_3\) (in argon) > 99 < 1
- \(\text{RhCl(PPh}_3)_3\) (in air) 24 76
- \([\text{Rh(COD)}_2]\text{BF}_4/\text{dppb}\) 99 1
- \(\text{Cp}_2\text{TiMe}_2\) (in benzene) 0 100