Non-Probative Photographs (or Words) Inflate Truthiness

Eryn J. Newman¹, Maryanne Garry¹, Daniel M. Bernstein², Justin Kantner³, & D. Stephen Lindsay³

Victoria University of Wellington, New Zealand¹
Kwantlen Polytechnic University, British Columbia, Canada²
University of Victoria, British Columbia, Canada³

Corresponding Author:
Maryanne Garry
School of Psychology
Victoria University of Wellington
PO Box 600
Wellington
New Zealand, 6147
Phone: +64 (4) 463 5769 Fax: +64 (4) 463 5402
email: Maryanne.Garry@vuw.ac.nz

Word Count: 3994
Abstract

When people evaluate claims they often rely on what comedian Stephen Colbert calls *truthiness*, subjective feelings of truth. In four experiments, we examined the impact of non-probative information on truthiness. In Experiments 1A and 1B, people saw familiar and unfamiliar celebrity names and, for each, quickly responded "true" or "false" to the claim "This famous person is alive" or (between subjects) "This famous person is dead." Within subjects, some names appeared with a photo of the celebrity engaged in his/her profession whereas other names appeared alone. For unfamiliar celebrity names, photos increased the likelihood that subjects judged the claim to be true. Moreover, the same photos inflated the truth of "Alive" and "Dead" claims, suggesting that photos did not produce an "alive bias," but a "truth bias." Experiment 2 showed that photos and verbal information similarly inflated truthiness, suggesting that the effect is not peculiar to photographs per se. Experiment 3 demonstrated that non-probative photos can also enhance the truthiness of general knowledge claims (*Giraffes are the only mammals that cannot jump*). These effects add to a growing literature on how non-probative information can inflate subjective feelings of truth.
Non-Probative Photographs (or Words) Inflate Truthiness

“I am no fan of dictionaries or reference books,” says comedian Stephen Colbert, “constantly telling us what is or isn't true.” Instead of looking up claims in a book, Colbert urges viewers to “try looking it up in your gut.” This is truthiness: “truth that comes from the gut, not books.” Of course, when people evaluate claims they use both rational thinking and intuitive hunches—often doing so, as Colbert implied, without having access to the facts. A century of research shows that these intuitive judgments are susceptible to influence from general beliefs, prejudices, and expectations, from features of the current context such as demand characteristics, and from aspects of past experience that interact with the present to privilege the accessibility of some memories over others (Bransford & Johnson; 1972; Henkel & Mather, 2007; Kunst-Wilson & Zajonc, 1980; Lindsay, 2008). In this paper, we use the term “truthiness effect” to refer to a category of phenomena in which—when making rapid judgements about the truth of a claim—non-probative information of a stimulus or situation causes people to shift towards believing that claim.

Suppose you evaluate the claim “Stephen King is alive.” You are probably familiar with Stephen King. The cognitive literature suggests that you will try to retrieve information from memory—related knowledge, thoughts, and images—to help you decide whether he is alive (Graesser & Hemphill, 1991). We know from research on confirmation bias that people search for information that supports their hypotheses, perhaps because (as per Spinoza’s notion) comprehending a claim entails representing it as true, whereas falsifying it requires a secondary, more effortful step (Gilbert, Tafarodi, & Malone, 1993; Nickerson, 1998). So given the claim “Stephen King is alive,” you might mentally test the hypothesis that he is indeed alive: You “see” recent images of him, “hear” him on NPR, or “remember” seeing advertisements for his latest book. The fluency with which you generate these alive-consistent thoughts and images may bolster their perceived currency. And so you conclude that the claim is true.

But now suppose you evaluate the claim “John Key is alive.” We suspect that most readers know
little to nothing about John Key. You might think “John Key? Not sure if I’ve heard of him. I have no
idea if he’s alive.” You might be unable to conjure thoughts and images to help you evaluate whether
the claim is true. Your only recourse would be to guess. But non-probative information can affect
people’s guesses in the moment. Indeed, several lines of research lead us to speculate that when a claim
appears with a photograph like the one of John Key in Figure 1, the photo might bias people to guess
that the claim is true.

We know from studies of cognitive fluency that presenting information in a semantically rich
context can facilitate conceptual processing and lead to illusions of familiarity in the moment. For
example, people more often claim they studied a target word (“boat”) earlier when the test word
appears in a semantically predictive sentence (“The stormy seas tossed the boat”) rather than in a
neutral sentence (“He saved up his money and bought a boat;” Whittlesea, 1993). The semantically
predictive context is thought to help people anticipate the final word, producing unexpectedly fluent
conceptual processing, which they take as evidence of familiarity—leading them to say they had
recently seen the word. This finding also fits with literature on cognitive availability: Repeated or
semantically primed information is easily retrieved from memory and people often conclude—
sometimes falsely—that easy retrieval signals frequency, familiarity, and truth (Begg, Anas, &

This literature suggests that in a single presentation, photos might provide a semantically rich
context, making details about an otherwise unfamiliar name more available. Thus, photos should
bootstrap the generation of thoughts and images that subjects may then be biased to construe as
evidence that the claim in question is true. To understand our thinking, reconsider the claim about John
Key, but this time look at the photo in Figure 1. Suddenly you know a little more about him. You might
think “He’s probably some kind of political figure—I see a flag, and microphones with media logos.
The flag has part of the Union Jack—looks like it’s from Australia or maybe New Zealand...” The
photo is related to the claim and non-probative—it does not tell you whether John Key is alive—but information you glean from that photo might nonetheless enable you to do a better job of imagining that the claim is true.

Related lines of research show that when people can easily imagine a target they often conclude—only moments later—that it is more likely (Sherman, Cialdini, Schwartzman, & Reynolds, 1985; see Alter & Oppenheimer, 2009 for a review). Photos should provide the raw materials for imagery, thereby facilitating generation of the rich perceptual and conceptual details people typically interpret as cues to reality (e.g., Johnson, 2006). Moreover, people are inclined to trust photos, which are often the best evidence that something actually occurred (Kelly & Nace, 1994). So even if photos do not provide probative evidence for a target claim (like the photo in Figure 1), they might nonetheless boost belief in the claim because photos are inherently credible themselves. In a particularly worrisome example of this sort of bias, students rated the scientific reasoning of a neuroscience article more favorably if the article included an image of the brain (McCabe & Castel, 2008).

This body of research suggests that photos might boost the truthiness of claims by bootstrapping the generation of related ideas and images, or by creating an aura of plausibility simply because people find photos to be credible. Many studies have demonstrated that imagination or repeated exposure to claims, can—over time—produce illusions of truth, belief, and memory (Bernstein, 2005; Brown & Marsh, 2008; Garry, Manning, Loftus, & Sherman, 1996; Lindsay et al., 2004). But we propose that a claim coupled with a related but non-probative photo might, in the moment, combine with confirmation bias to produce immediate truthiness (cf. Hansen & Wanke, 2010).

In our first two experiments, we showed people familiar and unfamiliar celebrity names; half the celebrities were alive. Celebrity names appeared with or without a photo. For each name, we asked some subjects to judge the truth of the claim “This famous person is alive.” The photos depicted celebrities alive, which might be taken as evidence of celebrities being alive. Therefore, we asked
another group of subjects to respond to the claim “This famous person is dead.” If photos help people generate hypothesis-consistent thoughts and images about unfamiliar celebrities then photos should increase the truthiness of claims about those celebrities, regardless of whether the claim is that the celebrity is alive or dead (cf. Unkelbach, 2007).

Experiment 1A and 1B

Method

Subjects. In Experiment 1A, 92 undergraduate psychology students from Victoria University of Wellington, New Zealand, participated for course credit. In Experiment 1B, 48 undergraduate psychology students from the University of Victoria, Canada, participated for optional bonus points.

Design. We used a 2 (photograph: yes, no) x 2 (familiarity: familiar, unfamiliar) x 2 (claim: alive, dead) mixed design, manipulating photograph and familiarity within subjects and claim between subjects.

Procedure. Based on data from preliminary norming, we assembled sets of low- and moderate-familiarity celebrity names; for brevity we refer to these as “unfamiliar” and “familiar” celebrities. Half of these celebrities were alive, and names of dead and alive celebrities were equal on familiarity (on a 5-point scale, $M_{\text{Alive}} = 2.89$, $SD_{\text{Alive}} = .62$, $M_{\text{Dead}} = 2.87$, $SD_{\text{Dead}} = .58$), and represented a similar range of eras and professions.

We used Macintosh iBook G4 computers and PsyScope software to present 80 celebrity names—40 familiar and 40 unfamiliar—to subjects. Names appeared, individually, in large black font against a white background. On half the trials, subjects saw a photo of the celebrity engaged in his or her profession. For example, like the photo of John Key, the current New Zealand Prime Minister, standing at a podium with microphones and a New Zealand flag (see Figure 1).

The order of names was randomized for each subject, counterbalanced to appear equally often with or without a photo, orthogonal to the alive/dead and low/high familiarity variables. Subjects
learned that sometimes they would see a photo and sometimes they would not. We did not provide any further instructions about how they should use the photo. As each name or name-photo pair appeared, we asked half our subjects to decide the truth of the claim “This famous person is alive” and the other half to decide the truth of the claim “This famous person is dead.” We asked subjects to respond “...as quickly as possible, but not so quickly that you start making errors” and asked them to respond within 3 seconds.¹

Experiment 1B, a replication, followed the same procedure with new sets of “unfamiliar” and “familiar” celebrities assembled after new norming with Canadian students. Subjects saw 84 celebrity names, presented using E-Prime Software on PCs.

Results

We calculated people’s bias (c) to say a claim was true (Stanislaw & Todorov, 1999).² Figure 1 shows that across Experiments 1A and 1B, the black bars are relatively more negative than the gray bars, indicating that pairing a claim with a photo led people to be more inclined to say that the claim was true. Relative to the no photo control, people were more biased to say true (lower values of c) when photos accompanied names (Experiment 1A, $F(1, 90) = 4.87$, $\eta^2_p = .05$; Experiment 1B, $F(1, 46) = 10.53$, $\eta^2_p = .19$). In both experiments the effect of photos tended to be larger for unfamiliar names (Experiment 1A, $t_{\text{unfamiliar}}(91) = 2.21$; Experiment 1B, $t_{\text{unfamiliar}}(47) = 3.74$) than for familiar names (Experiment 1A, $t_{\text{familiar}}(91) = 1.02$ ns; Experiment 1B, $t_{\text{familiar}}(47) = 1.25$, $p = .22$), although the Photo x Familiarity interaction was significant only in Experiment 1B, $F(1, 46) = 5.40$, $\eta^2_p = .11$, not in Experiment 1A, $F(1, 90) < 1$.

Truthiness or aliveness? Consistent with our hypothesis that photos promoted truthiness, not aliveness, claim (dead or alive) did not interact with photos ($F < 2$). There was a non-significant Photo x Familiarity x Claim interaction in Experiment 1B, $F(1, 46) = 2.62$, $p = .11$; this interaction was also non-significant in Experiment 1A, $F < 1$.
Interestingly, people tended to find "Alive" claims true more often than "Dead" claims. In Experiment 1A, this pattern was most pronounced for familiar names (Familiarity x Claim interaction, $F(1, 90) = 13.05, \eta^2_p = .13$; $t_{\text{familiar}}(91) = 4.63$, $t_{\text{unfamiliar}}(91) < 1$). In Experiment 1B a similar tendency occurred for all names, $F(1, 46) = 3.94, p = .05, \eta^2_p = .08$.

Discussion

As predicted, photos led to a truth bias for unfamiliar celebrity names. These results fit with a mechanism relating to cognitive availability: Photos might promote truthiness because they provide a rich semantic context that facilitates the generation of thoughts and images relating to the claim. But these results also fit with the idea that feelings of truthiness arose because photos are inherently credible. People often regard photos as evidence of reality. Indeed, Kelly and Nace (1994) showed that people trust photos even when they distrust the source in which they appear (e.g., the *National Enquirer*). Perhaps related to this finding, McCabe and Castel (2008) found that in contrast to photo-realistic images of the brain, bar graphs did not enhance ratings of the scientific reasoning in an article (see also Keehner, Mayberry, & Fischer, 2011). In Experiment 2, we examined whether unique characteristics of photos are essential ingredients in producing truthiness. To address this question, we compared the effect of photos to the effect of verbal descriptions of those photos. If these verbal descriptions also produce truthiness, it would suggest that when people lack knowledge, anything that makes it easier for people to generate thoughts and images related to a claim should bias them toward believing that claim.

Experiment 2

Method

Subjects. Fifty-four undergraduate students from the University of Victoria, Canada, participated for optional bonus points.

Design. We used a 2 (non-probative information: yes, no) x 2 (format of non-probative
information: photo, verbal) x 2 (claim: alive, dead) mixed design. We manipulated the format (photo vs. verbal) and claim (dead vs. alive) between subjects, and reduced the design by including only the condition that produces truthiness: unfamiliar names.

Materials and Procedure. Subjects saw 52 names comprised of 40 critical unfamiliar names from Experiment 1B and 12 moderate-familiarity celebrity names. We included a few moderate-familiarity names as fillers to make the task easier and more engaging for participants.

Half the subjects saw a photograph of the celebrity paired with half the names. The other half saw a verbal description of the celebrity instead of a photo. We created verbal descriptions for each name by asking two raters to extract specific but non-probative information from each celebrity photo: ethnicity, sex, hair, generic occupation, and a career-related concrete noun (for example, the information for John Key would be *white male; short brown straight hair; political leader; podium*).

Regardless of the format of the non-probative information that sometimes appeared with celebrity names, subjects had the same task: half responded to the truth of the claim “This famous person is alive” and the other half to “This famous person is dead.” All other aspects of the method were identical to Experiment 1B.

Results

Figure 1 shows that photos and verbal descriptions produced a similar truthiness effect. That is, people were more biased to say true when non-probative information accompanied names, $F(1, 50) = 10.27$, $\eta_{p}^2 = .17$. Claim did not interact with the presence or format of non-probative information (all Fs < 1).

Discussion

These findings show that truthiness is not tied to the perceived credibility of photos. Instead these results point to a more general mechanism whereby manipulations that facilitate elaboration, against the backdrop of a confirmation bias, lead people to conclude that claims are true. In
Experiment 3 we further explored the generalizability of the effect of non-probative photos on subjective truth, testing the hypothesis that general knowledge claims (“Turtles are deaf”) seem truer when paired with a photo that is related to, but does not specifically depict, the claim.

Experiment 3

Method

Subjects. In Experiment 3, 70 undergraduate psychology students from Victoria University of Wellington participated for course credit.

Design. We used a 2 (photograph: yes, no) x 2 (difficulty: easy, hard) within-subjects design.

Procedure. We used trivia statements from previous research and data from preliminary norming to assemble sets of easy and difficult true/false trivia statements sampling general knowledge (Nelson & Narens, 1980; Unkelbach, 2007). People answered easy statements correctly 80-100% of the time, and answered difficult statements correctly 40-60% of the time.

We used the same presentation and response formats as in the prior experiments. On half the trials, subjects saw a photo that depicted the grammatical subject of the statement, but never provided any diagnostic information about whether the statement was true. For example, the claim that “Macadamia nuts are in the same evolutionary family as peaches” appeared with a photo of macadamia nuts.

Results

As Figure 1 shows, photos had the same effect as in our prior experiments: they produced a truthiness effect $F(1, 69) = 6.65, \eta^2 = .09$. Although the interaction between difficulty and claim did not reach significance, $F(1, 69) = 1.82, p = .18$, follow-up analyses support a similar conclusion to Experiments 1A and 1B, in that the effect was most pronounced when people evaluated difficult rather than easy claims, $t_{\text{difficult}}(69) = 3.16, t_{\text{easy}}(69) = .85$, ns.

Although Figure 1 suggests that Experiments 1A, 1B, and 2 might be interpreted as showing that
that photos move people towards a neutral bias, Experiment 3 shows that photos move people towards truthiness. In Experiment 3, even without photos people had a tendency to respond that claims were true, yet photos still promoted truthiness.

General Discussion

Across four experiments, non-probative photos inflated truthiness. It is arguably unsurprising that photos inflated the truth of “Alive” claims: Photos depicted celebrities alive, and should have facilitated imagery of those celebrities doing various things—all possible evidence of aliveness. The fascinating finding is that the same photos inflated the truthiness of “Dead” claims: Photos did not produce an "alive bias," but a "truth bias." Moreover, the truthiness effect generalized beyond Dead or Alive judgements: Non-probative photos enhanced the subjective truth of general knowledge claims, too.

The finding that non-probative verbal information also inflated truthiness suggests that the effect of photos on subjective truth is driven not simply by a perception that photos are inherently trustworthy. We speculate that non-probative photos and verbal information help people generate pseudoevidence (cf. Kelly & Nace, 1994). People may selectively interpret information gleaned from a photo or description as consistent with their hypothesis and/or they may use such information to cue the mental generation of thoughts and images consistent with their hypothesis. It is also possible that the ease or fluency with which people bring related information to mind contributes to a feeling of truthiness. Although we cannot determine which of these mechanisms underlies the truthiness effect, across four experiments our data suggest a general mechanism whereby the availability of related but non-probative information promotes truthiness of unfamiliar claims.

Our findings suggest that even without repeated exposures or instructions to imagine, the mere presence of non-probative information such as photos might rapidly inflate the perceived truth of many types of true and false claims (cf. Brown & Marsh, 2008; Lindsay et al., 2004). They also suggest that
neuroscience claims need not be accompanied by neuroimages to seem more credible: a photo or description of the author might suffice (cf. McCabe & Castel, 2008).

We view the effects reported here not as qualitatively new phenomena but rather as lovely new exemplars of a growing family of effects pertaining to inferences (perhaps unconsciously made) regarding the mental generation of hypothesis-consistent evidence (Jacoby, Kelley, & Dywan, 1989; Johnson, 2006; Schwarz, 2010; Whittlesea, 2011). We describe the photo effect as “lovely” for two reasons. First, compared to other “truthiness-inducing manipulations” with which we have experience, the effect of non-probative photos seems to be quite robust. A robust effect is, of course, an essential tool for theory development, and we hope that future research will use the photo manipulation to explore the specific mechanisms underlying its effect. Second, we believe it is just plain cool that the same manipulation that can lead people to think that an obscure celebrity is alive can also lead people to think that celebrity is dead.
References

memories. *Journal of Memory and Language*, 57, 163-176.

Author Note

We are grateful for the generous support provided by the Marsden Fund and the Natural Sciences and Engineering Research Council of Canada.
Footnotes

1 In Experiment 1A, we did not record data for trials when responses exceeded 3 seconds, which happened on 9.62% of trials, but in Experiment 1B we recorded and analyzed all response times. Also, because of a programming error, two celebrity names appeared in the incorrect counterbalance; we excluded those names from analyses, but we find the same (significant) pattern of results when we include them.

2 Table 1, supplemental materials, provides a brief summary of the results of parallel d’ analyses.

3 We thank Elizabeth Loftus for raising this possibility.
Figure Caption

Figure 1. Bias for claims about familiar and unfamiliar names (in Experiments 1a-2) or easy and difficult trivia statements (in Experiment 3) presented with or without a photograph and collapsed across dead/alive factor (in Experiments 1a-2). Negative value of c is a bias to say true. In Experiments 1a-2, photos (or words) affected bias for unfamiliar names; in Experiment 3, photos affected bias for difficult trivia statements. Error bars show 95% within-subject confidence intervals for the photo/no-photo effect at each level of familiarity/difficulty (see Masson & Loftus, 2003). Photo courtesy of New Zealand National Party, Creative Commons license.