Chem 560 module Analysis of dynamic, equilibrating systems

Outline

- A. Intro to dynamic systems and weak interactions
- B. Stoichiometry and K_{assoc} by NMR
- C. Thermodynamic parameters by NMR
- D. Assembly kinetics by NMR
- E. Other techniques Student presentations

e.g. UV-Vis, Fluorescence, Kinetics by line shape analysis, Isothermal titration calorimetry, Stopped-flow, etc

Learning Aims

A1. Learn the fundamental nature of weak, non-covalent interactions

A2. Become familiar with dynamic systems and the meanings of the quantities used to characterize them.

B1. De-mystify the black-box of K_{assoc} determinations by all methods.

B2. Obtain in-depth understanding of the math and models for 1:1 binding equilibria.

B3. Understand the mathematics of the 1:1 binding isotherm, its applications, and its limitations.

B4. Gain a comprehensive understanding of how δ arises when looking at dynamic systems.

B5. Get practical, step-by-step instructions for determining stoichiometry and K_{assoc} by NMR.

C. Learn how NMR can be used to determine ΔH and ΔS for a given equilibrium D. Achieve a beginner-level understanding of studying kinetics by NMR. The goal is to allow you to understand literature, not to teach you how to do the experiments.

E. Get a beginner-level understanding of other methods

Dynamic systems and supramolecular chemistry

Figure 1.1 Comparison between the scope of molecular and supramolecular chemistry according to Lehn.¹

Dynamic systems are driven by weak interactions

Electrostatic interactions

Dispersive forces

Ion-Dipole interactions

Dipole–Dipole interactions

Hydrogen bonds

Aromatic-aromatic interactions and cation-pi interactions

The hydrophobic effect

Halogen bonds

Two reminders: 1) Opposites attract. 2) Math is hard

Ion-Ion interactions

$$\oplus \longrightarrow \bigcirc$$
 $U = z_1 z_2 e^2 / 4\pi \varepsilon_0 \varepsilon r$

Van der Waals forces

Van der Waals radii (Å)

Н	1.20
С	1.70
Ν	1.55
0	1.52
S	1.80
F	1.47
CI	1.75
Br	1.85
I	1.98

A. Bondi, J. Phys. Chem. 1964, 68 (3), 441.

Dispersion forces: filling the P pocket of Thrombin

K_i (μΜ)

Compound	R ¹		R²	Thrombin
rac-1*		0		0.09
rac- 20b	Ethyl		н	0.0081
rac- 20c	Cyclopropyl		н	0.010
rac-20d	Isopropyl		н	0.013
rac- 20e	Cyclohexyl		н	1.7
rac- 20f	Phenyl		н	1.4

Hydrogen bonding angles: crystallographic survey

Steiner, Angew. Chem. Int. Ed. 2002, 41, 48–76.

Vancomycin hydrogen bonds to the bacterial cell wall precursor D-Ala-D-Ala

Vancomycin-resistant Enterococcus (VRE)

 $\Delta K_{assoc.}$ = 1000x weaker to D-Ala-D-Lac

Aromatic-aromatic interaction geometries

'Torsion Balances' for measuring interaction strengths

NMR integration measures conformational K_{eq}

K. D. Shimizu,* P. Li, and J. Hwang Chapter in Aromatic Interactions, 2016. dx.doi.org/10.1039/9781782626626

Dispersion vs. Electrostatics: EDG/EWG substituents matter only if both rings are polarized

Dispersion vs. Electrostatics: EDG/EWG substituents matter only if rings are strongly polarized

J. Dunitz, ChemBioChem, 2004, 5, 614

Cation-π interactions: Isosteric inhibitors for the protein Factor Xa

Halogen bonds... an unconventional (δ +)

J. Am. Chem. Soc., 2010, 132 (5), pp 1646-1653

The clathrate model of the hydrophobic effect explains the entropic driving force

The "non-classical" model of the hydrophobic effect suggests an enthalpic driving force

Water in a small cavity can't form good H-bonds with neighbours.

Water released to bulk solvent is free to form good H-bonds with neighbours.

A hydrophobic binding event that's driven by ΔH

Scheme B 20. α -, β -, γ -Cyclodextrins with cavity dimensions (Å).

guest:		OH NO,	cooθ μ
α-CD			
-ΔG	18.7	11.5	11.6
-ΔH	42.8	23.0	14.3
TΔS	-24.1	-11.5	-2.7
β-CD			
-ΔG	15.0	14.2	24.5
-ΔH	16.1	10.2	21.6
TΔS	-1.1	3.9	2.9

Scheme B21. Thermodynamic data [kJ mol⁻¹] for selected cyclodextrin complexes.

Reality: interfacial water has limited H-bonds and orientations available

Interfacial water is limited in its possible orientations

Lower interfacial surface area means fewer water molecules are restricted

Lysozyme mutants fold more weakly when hydrophobic groups are shrunk down to Ala

Proteins	ΔT_m (°C)	Δ <i>H</i> (kcal/mol)	$\frac{\Delta\Delta G}{(\text{kcal/mol})}$
WT*		113	0
I17A	-8.4	87	-2.7
I27A	-10.1	76	-3.1
I29A	-8.2	85	-2.6
150A	-5.8	94	-2.0
I58A	-10.4	80	-3.2
I78A	-4.7	105	-1.6
I100A	-10.7	85	-3.4
V71A	-4.7	108	-1.5
V87A	-4.9	102	-1.7
V94A	-5.0	94	-1.8
V103A	-6.6	94	-2.2
VIIIA	-3.7	100	-1.3
V149A	-11.0	66	-3.2
M6A	-5.7	95	-1.9
M106A	-7.1	89	-2.3
F67A	-5.7	101	-1.9
F104A	-9.7	82	-3.1
L7A	8.1	90	-2.6
L33A	-12.3	67	-3.6
L66A	-13.4	69	-3.9
L84A	-13.4	67	-3.9
L91A	-9.7	85	-3.1

Table 2. Thermostabilities of mutant lysozymes^a

 $\Delta\Delta G$ correlates with hydrophobic (interfacial) surface area!

15-20 cal/mol for each Å²

Cooperation between H-bonds and hydrophobicity (a non-linear addition of binding energies)

J. Med. Chem. 2010, 53, 2126–2135

A different way to look at a cooperativity effect (a non-linear addition of binding energies)

Figure 1. Cooperativity of hydrogen bond formation and hydrophobic contacts in a set of thrombin inhibitors. Extension of the lipophilic side chain alone increases affinity by 2.1 kcal/mol. Addition of the amino group increases affinity by 1.2 kcal/mol. Cooperativity therefore amounts to 4.3 - 2.1 - 1.2 = 1.0 kcal/mol. Data from refs 30 and 31 were converted to kcal/mol and rounded to 1 decimal place.

Enthalpy-entropy compensation

Fig. 4 The crystallographically determined binding mode of **3c** and **4c** in complex with thrombin.

Binding Thermodynamics (ITC) (kcal/mol) $\Delta \mathbf{G} \ \Delta \mathbf{H} \ -\mathbf{T} \Delta \mathbf{S}$ 3c -7.8-6.5-1.4 4c -9.6-9.2-0.3

Enthalpy-entropy compensation

As ΔH becomes more favorable, the complex binds more tightly, and entropy becomes more unfavorable.