PS #5 Practice Questions - Constructing Molecular Orbitals, Nucleophilic Attack on Carbonyl Groups

Part I. Molecular orbitals (MO's). *Refer to pages 95 – 110 in Clayden and Greeves.*

Draw the σ (bonding) MO that arises from the linear combination of two p orbitals.

Draw the σ^* (antibonding) MO that arises from the linear combination of two p orbitals.

Draw the π (bonding) MO that arises from the linear combination of two p orbitals.

Draw the π^* (antibonding) MO that arises from the linear combination of two p orbitals.

Construct the σ and π system of formaldehyde (H₂CO).

Have 2 H with 1s orbitals, the C and O are sp^2 hybridized. Combine the sp^2 orbitals and H s orbitals to form the σ system.

Combine the p orbitals to form the π system.

Show the π^{\ast} bond on C-O in formaldehyde.

Part II. All of the following reactions involve nucleophilic attack on the electrophilic carbonyl carbon. Fill in the boxes with the appropriate product or reagent.

