A shape-dependent hydrophobic effect for tetrazoles†

Devin J. Mahnke, a Robert McDonald b and Fraser Hof a,b

Received (in Austin, TX, USA) 10th April 2007, Accepted 12th June 2007
First published as an Advance Article on the web 29th June 2007
DOI: 10.1039/b705256a

An adaptive tetrazole-derived host provides insight into tetrazolate-biomolecule interactions, and is the first member of a new family of receptors that function in pure water.

Tetrazoles have been used extensively in the creation of enzyme inhibitors; they are routinely pulled from the medicinal chemist’s toolkit to serve as pharmacophore replacements of carboxylic acids, and are prized for their similar ionization and recognition properties at physiological pH. 1 In recent years, elegant studies on tetrazole recognition have underlined the subtle differences in hydrogen bonding between carboxylates and tetrazoles, 2,3 and tetrazoles have found use in such varied applications as stacked supramolecular oligomers, 4 functional polymers, 5 and drug-binding gels. 6 We report here a compact tetrazole-derived receptor that shows high selectivity in its binding of ammonium ions in aqueous solutions. Binding and structural studies reveal that the host’s charged tetrazolate rings have a significant hydrophobicity only when their faces engage quaternary ammonium ions. Unlike closely related non-tetrazole analogs, the tetrazole host retains the ability to bind partners in pure buffered water.

Host 1 was designed to present three tetrazole substituents on the same face of its aromatic core, 7,9 and was synthesized by adaptation of a tetrazole-forming methodology that utilizes Zn II to mediate the cycloaddition of nitriles with N 3− (Scheme 1 — see the ESI† for synthetic procedures). 10 The crystal structure of neutral host 1 reveals a water molecule at the focal point of the host’s three tetrazole binding elements: one tetrazole NH donates a hydrogen bond to the water’s lone pair, while the other two tetrazoles are oriented such that their lone pairs receive hydrogen bonds from the water’s protons (Fig. 1). To study the cation-binding aptitude of 1 in water, the fully deprotonated host 1-Na 3 binds by treatment with NaOMe. NMR titrations in buffered 60 : 40 CD 3 OD−D 2 O (pD* 8.65) show a steady trend of decreasing binding constants in the series starting with primary MeNH 4+ (strongest) and proceeding one methyl group at a time to quaternary Me 2 N + (weakest) (Table, entries 1–4). Despite the triamionic nature of the host under these conditions, Job plots for both the primary ammonium salt MeNH 2 Cl and the quaternary ammonium salt Me 2 NI show a 1 : 1 binding stoichiometry (Fig. 2, inset—see the ESI† for pK a determinations and additional Job plots). This suggests that all three of the host’s convergent anionic groups cooperate to achieve effective binding of a single cation in this competitive medium. In analogy with a previous report of weak tetrazole-amidinium hydrogen bonding, 2 host 1-Na 3 binds guanidinium cation below the limits of detection (K assoc <10 M −1) in all of the solvent systems studied.

More interesting than the association constants themselves, a key indicator of binding geometry is found in the movement of the 1 H NMR signals for the host’s methylene protons upon addition of different ammonium ions. Addition of MeNH 2 Cl causes an upfield shift in the host’s CH 3 CH 3 protons, while an opposing downfield shift is observed upon binding of Me 2 NI (Fig. 2 and Fig. 1 X-Ray crystal structure of 1-H 2 O with thermal ellipsoids displayed at 50% probability. Selected hydrogen bonding distances and angles: N11–O2S 2.664(2) Å; N11–H11–O2S 179(3); N24–O2S 2.9374(14) Å; O2S–H2SO–N24 176.1(3). Primed atoms are displayed about a crystallographically imposed plane of symmetry. A solvent MeOH molecule on the exterior of the complex has been omitted for clarity.
Table 1 Binding constants and binding-induced chemical shifts for hosts 1-\(\text{Na}_3\) and 2-\(\text{Na}_3\) determined by \(^1\)H NMR titration at 298 K

<table>
<thead>
<tr>
<th>Entry</th>
<th>Host</th>
<th>Guest</th>
<th>Solvent</th>
<th>(K_{\text{assoc}} / \text{M}^{-1})</th>
<th>(\Delta \delta_{\text{max}} / \text{ppm})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{MeNH}_3)Cl</td>
<td>M/W</td>
<td>1030</td>
<td>-0.29</td>
</tr>
<tr>
<td>2</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{Me}_2\text{NH}_3)Cl</td>
<td>M/W</td>
<td>180*</td>
<td>0*</td>
</tr>
<tr>
<td>3</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{MeNH}_3)Cl</td>
<td>M/W</td>
<td>50</td>
<td>0.06</td>
</tr>
<tr>
<td>4</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{Me}_2\text{NI})</td>
<td>M/W</td>
<td>50</td>
<td>0.17</td>
</tr>
<tr>
<td>5</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{MeNH}_3)Cl</td>
<td>W</td>
<td><10</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1-(\text{Na}_3)</td>
<td>(\text{Me}_2\text{NI})</td>
<td>W</td>
<td>65</td>
<td>0.07</td>
</tr>
<tr>
<td>7</td>
<td>2-(\text{Na}_3)</td>
<td>(\text{MeNH}_3)Cl</td>
<td>M/W</td>
<td>1900</td>
<td>-0.07</td>
</tr>
<tr>
<td>8</td>
<td>2-(\text{Na}_3)</td>
<td>(\text{MeNH}_3)Cl</td>
<td>W</td>
<td><10</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2-(\text{Na}_3)</td>
<td>(\text{Me}_2\text{NI})</td>
<td>M/W</td>
<td><10</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>2-(\text{Na}_3)</td>
<td>(\text{Me}_2\text{NI})</td>
<td>W</td>
<td><10</td>
<td>0</td>
</tr>
</tbody>
</table>

* M/W = 60 : 40 CD\(_3\)OD–D\(_2\)O buffered with 10 mM Na\(_3\)HPO\(_4\) at pD* 8.65. W = D\(_2\)O buffered with 10 mM Na\(_3\)HPO\(_4\) at pD 7.4.

Values determined by fitting of \(^1\)H NMR titration data to a 1 : 1 binding isotherm. All values are the average of 2–3 runs with [Host] = 1–2 mM, and include \(K_{\text{assoc}}\) values obtained from all host protons that undergo chemical shift during the titrations. Estimated uncertainty ±20%. Values reported as <10 for titrations that produced negligible chemical shift of any host protons. a Maximum binding-induced chemical shift of the diagnostic host CH\(_2\)CH\(_3\) protons. d The CH\(_2\)CH\(_3\) protons did not shift during this titration. \(K_{\text{assoc}}\) was determined by observation of other host protons.

Fig. 2 \(^1\)H NMR data showing divergent chemical shifts of the diagnostic host CH\(_2\)CH\(_3\) signal upon titration with MeNH\(_3\)Cl (■) and Me\(_2\)NI (▲) at 298 K. [Host] = 1 mM. Solvent = 60 : 40 CD\(_3\)OD–D\(_2\)O (10 mM Na\(_3\)HPO\(_4\), pD* = 8.65). Fits of data to 1 : 1 binding isotherms are shown as solid lines. Inset: Job plots for MeNH\(_3\)Cl (■) and Me\(_2\)NI (▲) demonstrate the formation of 1 : 1 complexes for both guests. [Host] + [Guest] = 5 mM. See the ESI† for representative titration curves in buffered water.

Table 1 reveals the source of these opposing chemical shifts. The complex 1\(^{1+}\)-MeNH\(_3\)\(^+\) assumes a geometry similar to that observed in the crystal structure of 1-H\(_2\)O: the edge of each tetrazolate ring forms hydrogen bonds with the primary ammonium ion, and the protons of the host’s adjacent methylene group are thus forced into the (shielding) face of the aromatic tetrazolate (Fig. 3(a)). Modeling suggests that in complex 1\(^{1+}\)-Me\(_2\)N\(^+\) the tetrazolate binding elements can adopt a variety of stable edge-on and face-on geometries (see the ESI†), but the NMR data is most consistent with a structure in which the tetrazolate arms have rotated to present their aromatic faces to the guest. In this geometry, the downfield shift of the host’s adjacent methylene protons is explained by their location at the deshielding edge of the host’s tetrazolate (Fig. 3(b)).

Why does the host choose to direct the tetrazolate faces toward the guest, and what is the nature of the interaction between an anionic tetrazolate face and a quaternary ammonium ion? Titrations in the more competitive pure D\(_2\)O show that primary MeNH\(_3\)\(^+\) is not bound to 1-\(\text{Na}_3\) at all, while Me\(_2\)N\(^+\) forms a complex slightly stronger than in CD\(_3\)OD–D\(_2\)O mixtures (Table 1, entries 5 and 6). This result suggests that the tetrazolate rings can participate in the hydrophobic effect (that is, experience favorable dispersive interactions with the guest in place of weaker alternative interactions with water) when they present their faces to the more hydrophobic quaternary ammonium guest. Further evidence for the significance of the hydrophobic nature of the tetrazolate faces comes from the study of tricarboxylate host 2-\(\text{Na}_3\), an analog with similar overall charge, geometry, and hydrogen bonding capability, but lacking the faces of the tetrazolate host. As expected, the higher charge density of 2-\(\text{Na}_3\) relative to tetrazole 1-\(\text{Na}_3\) provides stronger electrostatic binding—in the less polar CD\(_3\)OD–D\(_2\)O mixtures, \(K_{\text{assoc}}\) for 2\(^{1+}\)-MeNH\(_3\)\(^+\) is almost double that of 1\(^{1+}\)-MeNH\(_3\)\(^+\) (Table, entries 1 and 7). However, in pure D\(_2\)O, host 2-\(\text{Na}_3\) does not bind the quaternary ammonium guest Me\(_2\)N\(^+\) (Table, entry 10) despite its electrostatic superiority over host 1-\(\text{Na}_3\). Only the tetrazole host in its face-on orientation provides a complementary hydrophobic surface for interaction with Me\(_2\)N\(^+\).

It is well known to medicinal chemists that tetrazolate is generally more hydrophobic than carboxylate, but tetrazolate-for-carboxylate substitutions are only sometimes beneficial for binding.1 Does the shape-dependent hydrophobic character of 1 help explain the interactions of tetrazolate ligands with biomolecules? Losartan, the first marketed AT\(_1\) receptor antagonist for the treatment of hypertension, is an example of a tetrazolate-containing drug that displays enhanced potency (11-fold improved IC\(_{50}\)) relative to its carboxylate-containing analog.13 An early study of losartan SAR/mutation data showed clear differences between carboxylate- and tetrazolate-receptor interactions that the
solutions, our tetrazole-derived host occupies a middle ground positioned around the tetrazolate’s edges (Fig. 4). and an equator of hydrogen bonding contacts to polar residues hydrophobic contact on each face of the inhibitor’s tetrazolate ring Lys199 make a hydrophobic contact with losartan’s tetrazolate guests in pure water without extensive hydrophobic decoration27) re lun c h a r g e d hy dro g e nb o nd s t o ow e a kt ob in dc a t i o nc a tion i c recently published model15 in which the newer tetrazolate-containing AT1 antagonists) and the protein is the interaction between the tetrazolate of losartan (and those of 1 K .N o d a ,Y .S a a d ,A .K i n o s h i t a ,T .P .B o y l e ,R .M .G r a h a m ,A .H u s a i n ,14 More than ten years later, the nature of the attract ion for binding in less polar solvents, but is too well solvated pharmacological properties) not found in classical cyclophane- in order to take advantage of the attractive features of tetrazole- derived quaternary ammonium ion receptors.28–30 The authors thank Tom Fyles for expert assistance with pKₐ determinations. This research was funded by NSERC, CFI/ BCKDF, and the University of Victoria.

Notes and references