Price elasticity of demand

- The price elasticity of demand of a good measures the responsiveness of the quantity demanded of the good to changes in the price of that good.
\square It is the percent change in the quantity demanded of the good divided by the percent change in its price.
\square Since it is always negative (law of demand), it is normally reported as the absolute value.
- Why don't we just use the slope?
\square It tells us about the price/quantity relationship
- The slope is not "units free"

Slope is not "units free"

- Consider the demand curve for soda

Fluid Ounces/week
- Response to a price fall from $\$ 1.50$ to $\$ 1.00$?
- Slope = (P2-P1)/(Q2-Q1)

I: $-.5 / 10=-1 / 20 \quad$ II: $-.5 / 120=-1 / 240$

Price elasticity of demand

- Thus, instead we use elasticity of demand
- Example:
\square As the price of soda decreases from $\$ 1.50$ to $\$ 1$ per can, the quantity demanded rises from 30 cans to 40 cans.
- As the price of soda decreases by 33%, the quantity demanded increases by 33%.
\square The price elasticity of demand is $33 \% / 33 \%=1.00$.
\square As the price of soda increases from $\$ 1$ to $\$ 1.50$ per can, the quantity demanded falls from 40 cans to 30 cans.
- As the price of soda increases by 50%, the quantity demanded falls by 25%.
\square The price elasticity of demand is $25 \% / 50 \%=0.50$.
Huh? What's going on?
- We need a better way of calculating percent changes.

Calculating percent changes

- The midpoint method says to calculate percentage changes as a percentage of the average between starting and final values.
- Example:

As the price of soda increases from $\$ 1$ to $\$ 1.50$ per can, the quantity demanded falls from 30 cans to 20 cans.

- As the price of soda increases by $\frac{\$ 0.5}{(\$ 1+\$ 1.5) / 2}=40 \%$
- ... the quantity demanded falls by $\frac{10}{(40+30) / 2}=29 \%$
- The price elasticity of demand is $29 \% / 40 \%=0.73$

Types of elasticity of demand

1. Elastic Demand

- We call demand (at some point) elastic, if the quantity demanded is relatively responsive to changes in price.
\square Demand is elastic when the price elasticity of demand is >1.
- The percentage change in quantity demanded is greater than the percentage change in price
\square Small increase in price yields a large decrease in quantity demanded Example: Soda - lots of substitutes (Gatorade, Juice)

2. Perfectly Elastic Demand

- Price elasticity of demand $=\infty$
- Only able to sell good at a fixed price
- Demand curve is horizontal

Example: Homogeneous goods (milk, eggs, gas)

Types of elasticity of demand

3. Inelastic Demand

- We call demand (at some point) inelastic, if the quantity demanded is relatively unresponsive to changes in price.
\square Demand is inelastic when the price elasticity of demand is between 0 and 1.
- The percentage change in quantity demanded is smaller than the percentage change in price
- A big increase in price leads to a small change in quantity

Example: Necessities (telephone, electricity)
4. Perfectly Inelastic Demand

- Price elasticity of demand $=0$
- Demand does not respond to price changes
- The demand curve is vertical

Example: absolute necessities (Insulin)

Types of elasticity of demand

5. Unit Elastic Demand

- We call demand (at some point) unit elastic, if the quantity demanded changes proportionately to changes in price.
\square Demand is unit elastic when the price elasticity of demand is $=1$.

Factors affecting elasticity of demand

1. Availability of Substitutes

- If you can substitute easily demand is likely to be more elastic
- e.g. Coke - lots of substitutes (Pepsi, drinks)
- Coke is a pretty specific good
- In general, broader categories have few substitutes

2. Importance in Budget

- Goods that make up a large fraction of budget tend to be more elastic
- e.g. Canada - increased price of cigarettes
- This had a bigger effect on teenagers

Factors affecting elasticity of demand

2. Necessity or Luxury

- Elasticity of demand tends to be low if the good is something you must have
- e.g. medicine
- Elasticity tends to be high if the good is something you can easily live without

3. Time Duration

Short-Run: can't locate substitutes, more inelastic
Long-Run: can search for substitutes
Example: OPEC 1970's colluded to raise price of oil

Elasticity and total revenue

- Why do we care whether a good is elastic or inelastic?
- The elasticity can tell us something about what happens to total revenue as price changes

Example: price increase

- What happens to revenue if price rises?
- Total Revenue = Price X Quantity

- The price rises but quantity demanded falls

Elasticity and total revenue

- Therefore, the overall effect on total revenue depends on which effect is bigger
- Elasticity tells us this
\% rise in P ¢ \% fall in Q
- Total revenue will dhecture
- True if demand is irlabitistic
$\% \Delta \mathrm{Q} / \% \Delta \mathrm{P} \gg 1$
$\% \Delta Q \approx \% \Delta P$

Elasticity and total revenue

Price decrease: change in price effect is negative and the quantity effect is positive

- Demand Elastic: Total revenue will increase
- Demand Inelastic: Total revenue will decrease

Summary Table

Price Change Elasticity (D) Effect on TR

Decrease	Inelastic $(\% \Delta \mathrm{Q}<\% \Delta \mathrm{P})$	\Downarrow
Decrease	Elastic $(\% \Delta \mathrm{Q}>\Delta \mathrm{P})$	\Uparrow
Increase	Inelastic $(\% \Delta \mathrm{Q}<\% \Delta \mathrm{P})$	\Uparrow
Increase	Elastic $(\% \Delta \mathrm{Q}>\% \Delta \mathrm{P})$	\Downarrow

Linear demand curves

- Elasticity changes along curve even if the slope doesn't

P	Q
2	10
3	8
4	6
5	4

- Elasticity in 3 different regions
\$4-\$5: elasticity of demand = 1.8 (elastic)
\$3-\$4: elasticity of demand = 1 (unit elastic)
\$2-\$3: elasticity of demand $=0.56$ (inelastic)

Linear demand curves and revenue

What does this imply about Total Revenue?
Above Midpoint (elastic: \% $\Delta \mathrm{Q}>\% \Delta \mathrm{P}$)

- Decrease P, Increase Q will increase Revenue
- Increase P, Decrease Q will decrease Revenue

Below Midpoint (inelastic: $\% \Delta \mathrm{Q}<\% \Delta \mathrm{P}$)

- Decrease P, Increase Q will decrease Revenue
- Increase P, Decrease Q will increase Revenue

At Midpoint (unit elastic)

- Total Revenue is maximized

Other important elasticities

Cross-price elasticity of demand:

- The cross-price elasticity of demand between two goods measures the responsiveness of the quantity demanded of one good to changes in the price of another good.
\square It is the percent change in the quantity demanded of one good divided by the percent change in the price of the other good.
\square It can be positive or negative.
- If it is positive, the two goods are substitutes.
- If it is negative, the two goods are complements.

Income elasticity of demand

- The income elasticity of demand of a good measures the responsiveness of the quantity demanded of the good to changes in income.
$\square \mathrm{It}$ is the percent change in the quantity demanded of the good divided by the percent change in income.
It can be positive or negative.
- If it is positive, the good is a normal good.
- If it is negative, the good is an inferior good.

Price elasticity of supply

- The price elasticity of supply of a good measures the responsiveness of the quantity supplied of the good to changes in the price of that good.
\square It is the percent change in the quantity supplied of the good divided by the percent change in its price.
\square This is always positive ("law of diminishing returns").

How bad are taxes?

Who bears the tax?

- The more inelastic demand is, the more of the tax falls on consumers.

Who bears the tax?

- The more inelastic supply is, the more of the tax falls on producers.

How much deadweight loss?

- The more transactions are discouraged, the greater deadweight loss.

How much deadweight loss?

- The more transactions are discouraged, the greater deadweight loss.

