

Short-run and long-run

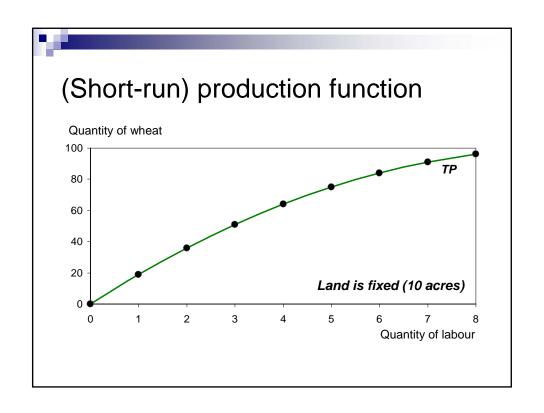
- It can take time to adjust the level of production
 - □ inputs may not be available immediately
- e.g. Parcel Delivery Company
 - $\hfill\Box$ To increase production may need to :
 - build a warehouse
 - purchase/lease jets
 These all take time
 - hire workers
- We will define the short and long-run by whether or not the quantity of inputs is fixed

Short run and long run

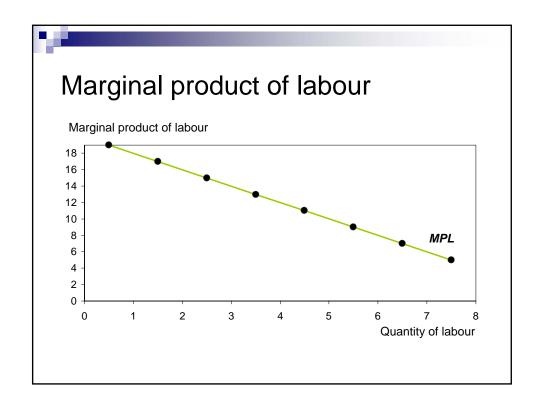
- In the *short run* a firm can change the quantities of only some of its inputs.
 - □ *Variable inputs* are those a firm can change in the short run.
 - ☐ Fixed inputs are those a firm cannot change in the short run.
 - □ Because there are fixed inputs firms can not enter.
- In the long run a firm can change the quantities of all of its inputs.
 - ☐ That means in the long run all inputs are variable.
 - □ Because all inputs are variable firms can enter.
- For the moment, we'll only study the short run.

(Short-run) production function

- A firm's production function tells you how much output is produced from given quantities of inputs.
 - For now, let's assume a firm uses only two inputs: labour and capital.
 - ☐ And: let's assume labour is the variable input and capital is the fixed input.
- The short-run production function shows how varying the variable input affects the quantity of output, for a given amount of the fixed input.


(Short-run) production function

- Example: wheat farm
 - □ Fixed input (land): 10 acres
 - □ Variable input (labour): workers
- We'll mostly restrict ourselves to two inputs (it's easy).
 - ☐ And, we'll usually think of land as the fixed input in the short run,
 - □ ... and of labour as the variable input in the short run.



(Short-run) production function

Quantity labour l	_
0	0
1	19
2	36
3	51
4	64
5	75
6	84
7	91
8	96

1arginal p	roduct of	labour
Quantity of labour L	Quantity of wheat Q	Marginal product of labour MPL=∆Q/∆L
0	0 —	
1	19 <	19
2	36 <	17
3	51 <	13
4	64 <	10
5	75 <	9
6	84 <	7
7	91 <	5
8	96	-

Diminishing returns to an input

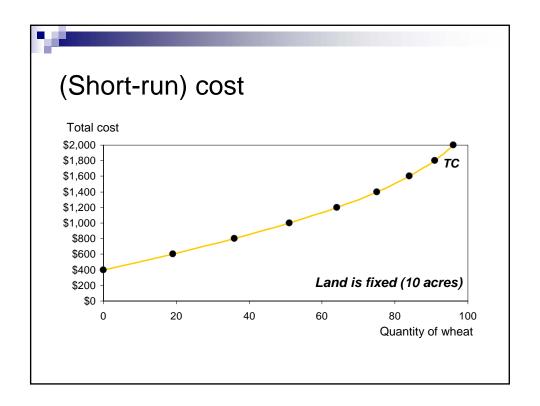
- There are diminishing returns to an input if the marginal product of that input declines (after some point) the more of that input you use, holding all other inputs fixed.
 - □ Here, there are diminishing returns to labour: the more workers you use, the less each extra worker adds to output.
- Why do we assume that the returns will begin to diminish?

Diminishing returns to an input

- In our example of wheat production, the amount of land is fixed.
- As the number of workers increases, the land is farmed more intensively.
- Thus, each additional worker is working with a smaller share of the 10 hectares than the previous worker.
- Eventually, additional workers will not be able to produce as much output as previous workers.
- This result rests on the assumption that at least one of the inputs is fixed.

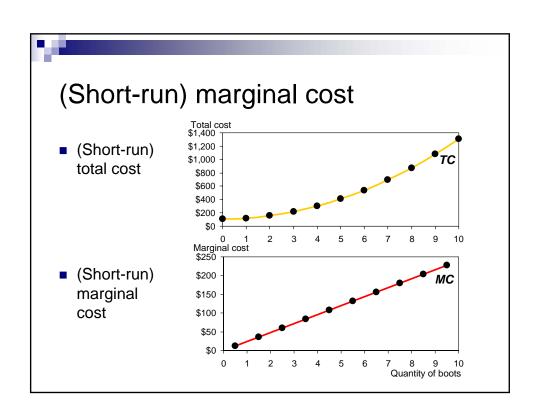
From production to cost curves

- Firms are only tangentially interested in the relationship between *inputs* and *output*.
- To maximize profits, it would be helpful to know about the relationship between *output* and the *cost* of production.
- To translate the amount of capital and labour needed to produce a given level of production to the cost of production we need to know the prices of the inputs.


(Short-run) cost

- The cost that comes from the fixed input is called *fixed cost* (*FC*).
 - □ "Overhead"
 - □ Suppose 10 acres of land cost \$400.
- The cost that comes from the variable input is called *variable cost* (*VC*).
 - □ Suppose each worker costs \$200.
- The sum of fixed cost and variable cost is called total cost (TC = FC + VC).

(Short-run) cost

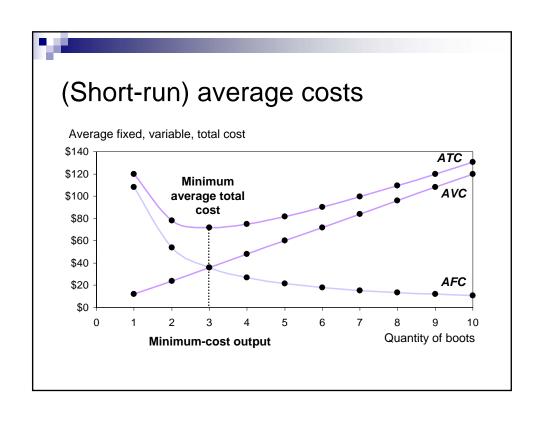

Quantity of labour L	Quantity of wheat Q	Variable cost VC	Total cost TC = FC + VC
0	0	\$0	\$400
1	19	200	600
2	36	400	800
3	51	600	1,000
4	64	800	1,200
5	75	1,000	1,400
6	84	1,200	1,600
7	91	1,400	1,800
8	96	1,600	2,000

(Short-run) marginal cost

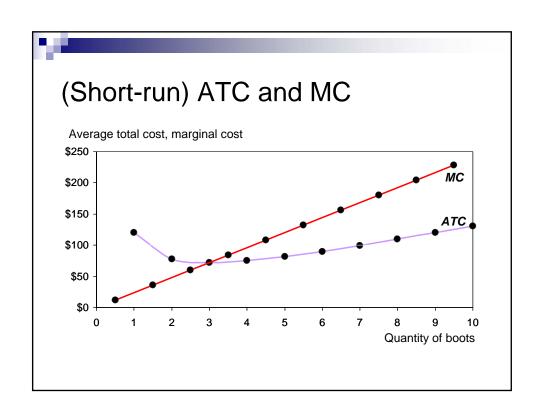
- The *marginal cost* is the additional cost from doing one more unit of an activity.
 - ☐ Here, it is the additional cost from producing one more unit of output.
 - $\hfill\Box$ It is the additional cost *per additional unit of output*.
 - \square $MC = \triangle TC/\triangle Q$
- Example (for convenience): bootmaking
 - □ Fixed cost (FC) = \$108

hort-ru	n) marg	ginal cost	
Quantity of	Variable cost	Total cost	Marginal cos
boots Q	Variable cost VC	TC = FC + VC	$MC = \Delta TC/\Delta G$
0	\$0	\$108 —	C40
1	12	120	\$12 36
2	48	156	60
3	108	216	84
4	192	300	108
5	300	408	108
6	432	540	156
7	588	696	
8	768	876	180
9	972	1,080	
10	1,200	1,308	228

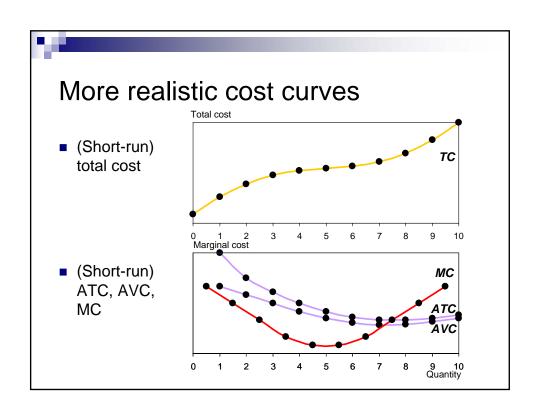
Explaining increasing marginal cost


- Why does the short-run marginal costs increase as output expands?
- This is a direct result of diminishing marginal product of labour.
- Eventually, more and more labour is required to increase output by one unit.
- Because each unit of labour must be paid for, the cost per additional unit of output must rise.

(Short-run) average costs


- The average fixed cost is the fixed cost per unit of output (AFC = FC/Q).
- The average variable cost is the variable cost per unit of output (AVC = VC/Q).
- The average total cost is the total cost per unit of output (ATC = TC/Q).
 - \square Also, of course, ATC = AFC + AVC.

(5	Short-r	run) a	verage	e cos	ts	
	Quantity of boots Q	Variable cos	t Average var. cost AVC	Total cost TC	Average total cost ATC	Average fixed cost AFC
	0	\$0	-	\$108	-	-
	1	12	\$12	120	\$120	\$108
	2	48	24	156	78	54
	3	108	36	216	72	36
	4	192	48	300	75	27
	5	300	60	408	81.60	21.60
	6	432	72	540	90	18
	7	588	84	696	99.43	15.43
	8	768	96	876	109.50	13.50
	9	972	108	1,080	120	12
	10	1,200	120	1,308	130.80	10.80


(Short-run) average total cost

- Two effects:
 - □ "Spreading effect"
 - The more output you produce, the more units of output the fixed cost is spread over.
 - Average fixed cost falls, which tends to make average total cost fall.
 - ☐ "Diminishing returns effect"
 - The more output you produce, the higher the average variable cost, because of diminishing returns to the variable input (labour).
 - Average variable cost rises, which tends to make average total cost rise.

(Short-run) ATC and MC

- Marginal cost always goes through the minimum average total cost.
 - ☐ If marginal cost is below average total cost, average total cost is falling.
 - ☐ If marginal cost is above average total cost, average total cost is rising.
 - □ Like grades in this class!

Perfect competition

- In a "perfectly competitive" industry:
- There are many producers, each with a small market share.
 - No significant influence on total output and therefore price.
- Firms produce "homogeneous goods".
 - Output is perfectly substitutable.
- There is free entry and exit (in the long-run).
- All producers are price-takers.
 - ☐ The firm takes the market price as given because it has no influence on the price.

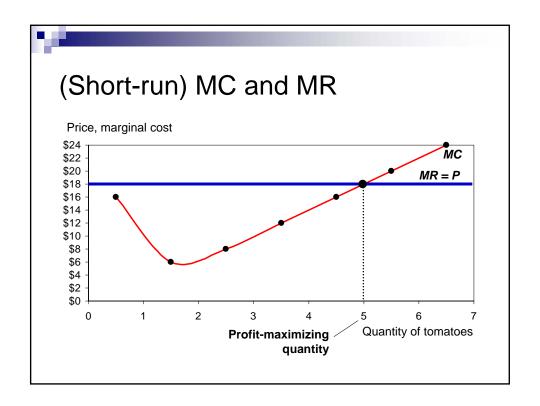

Production decisions

- Production decisions are "how much" decisions.
 - ☐ We study "how much" decisions by using marginal analysis:
 - □ Compare marginal costs and marginal benefits.
 - The marginal benefit of one more unit in the case of firms is the additional revenue from selling that one more unit.
 - This is called marginal revenue (MR).
- Produce output up to the point where MR = MC.
 - ☐ This *optimal output rule* has got to be true for any producer (perfectly competitive or not).

Price-taking and marginal revenue

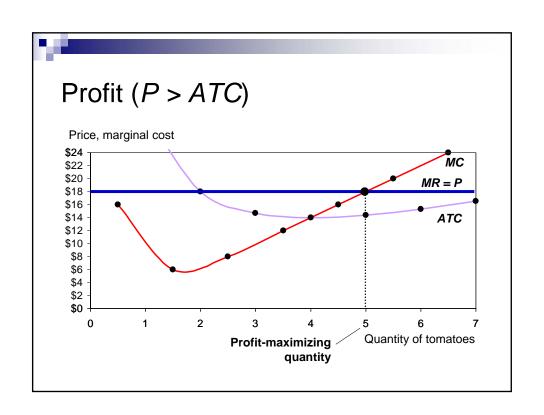
- Price-taking means that regardless of how much the firm produces, for each additional unit produced it gets the same price.
- From the firm's perspective, demand is perfectly elastic

Price-taking and optimization

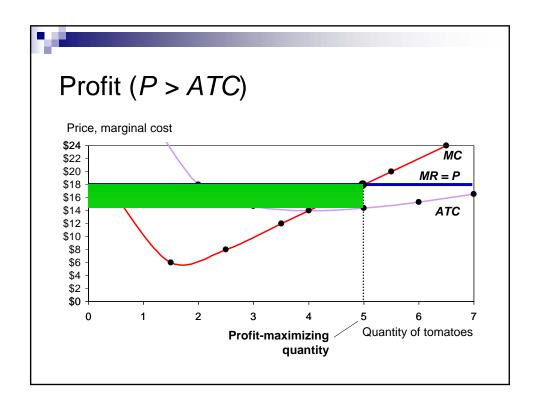

- This implies that marginal revenue is constant.
 - Marginal revenue is the additional revenue from selling one more unit of output.
 - For price-taking producers <u>only</u>, marginal revenue is the same as price.
- For price-taking producers <u>only</u>, the optimal output rule therefore becomes:
 - \square Produce output up to the point where P = MC.

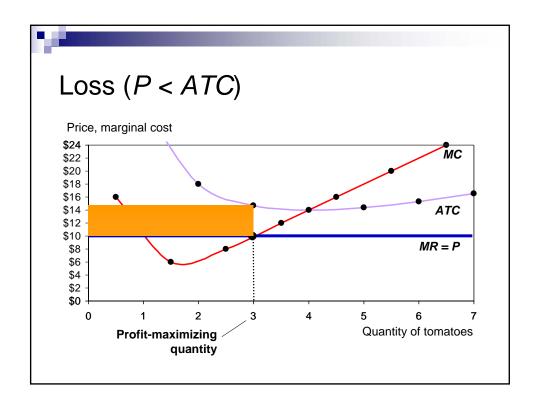
(Short-run) costs and MR

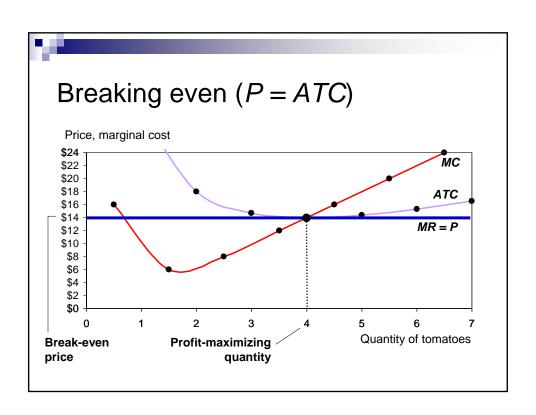
- Example: tomato production.
 - □ Price P = \$18 (MR = P).


Quantity of tomatoes Q		Total cost TC \$14	Marginal cost MC	•	Total R revenue TR	Profit TR - TC -\$14
1	16	30	>> \$16 >> 6	\$18 √	, \$0 , 18	-914 -12
2 3	22 30	36 <u>44</u> <u>44</u>	8 12	18 ✓	, 36 , 54	0 10
4 5	42 58	56 <u></u>		18 🗸	, 72 90	16 18
6	78 102	92	2024	18 🗶 18 🗶	108	16 10

Profit or no?

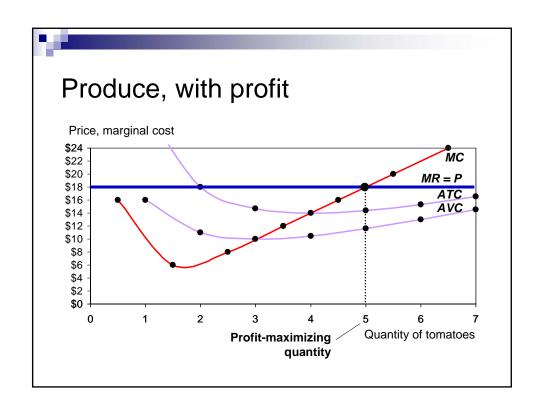

- A producer makes positive profit when total revenue is greater than total cost.
 - \square TR > TC
- Now divide both sides by output (Q).
 - \square TR/Q > TC/Q
 - We have a term for TR/Q ... P!
 - We have a term for TC/Q ... ATC!
- So a producer is profitable when
 - $\square P > ATC$

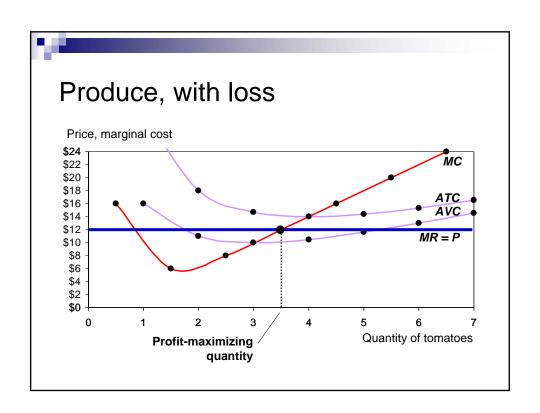

, , , , , , _ , , , , , , , , , , , , ,	IN A	VARAGA	cocto	•
1011-11	uli) a	verage	COSIS	
Quantity of tomatoes Q	Variable cost VC	Average var. cost AVC	Total cost TC	Average total cost ATC
0	\$0	-	\$14	-
1	16	\$16	30	\$30
2	22	11	36	18
3	30	10	44	14.67
4	42	10.50	56	14
5	58	11.60	72	14.40
6	78	13	92	15.33
7	102	14.57	116	16.57

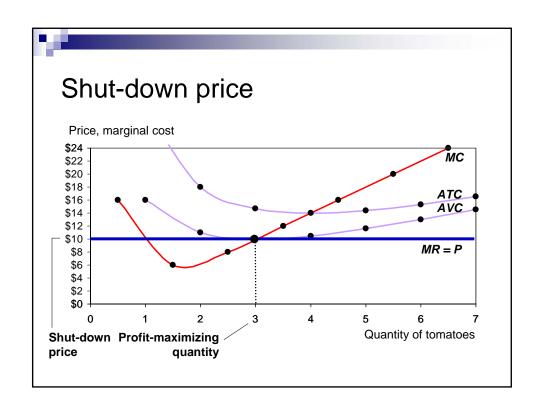


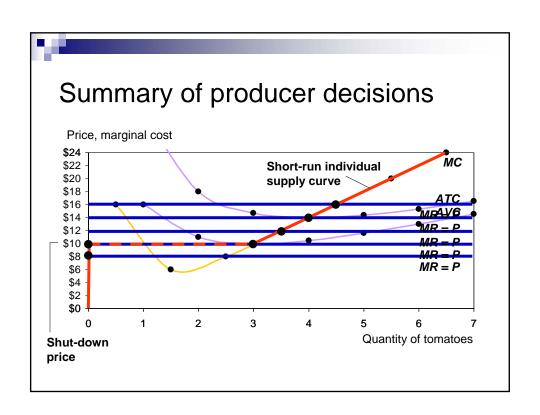
Profit or loss, graphically

- Profit is total revenue minus total cost:
 - \square Profit = TR TC
- Divide and multiply by output (Q):
 - \square Profit = $((TR TC)/Q) \cdot Q$
 - \square Profit = $(TR/Q TC/Q) \cdot Q$
 - \square Profit = $(P ATC) \cdot Q$

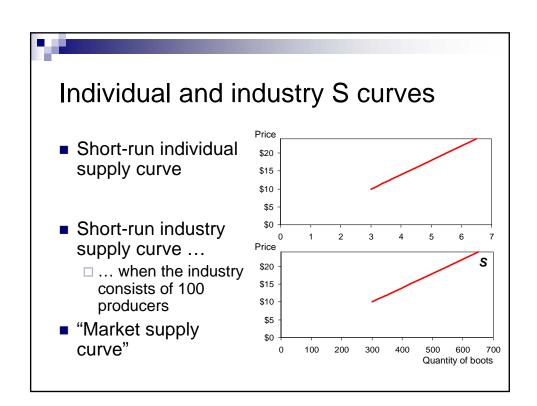

Produce or no?


- If a producer makes negative profit (a loss), will it automatically want to shut down (i.e. stop producing)?
 - □ No.
- Remember we're in the short run!
 - □ When a producer shuts down, she still has to pay the fixed cost, so that her profit is: FC.
 - ☐ That is, a producer wants to shut down only if the loss from producing the profit-maximizing quantity is greater than the fixed cost.




Produce or no?

- Shut down if:
 - □ Profit (producing) < profit (shutting down)
 - \square TR (VC + FC) < 0 FC
 - \Box TR VC < 0
 - \Box TR < VC
 - \Box TR/Q < VC/Q
 - \Box P < AVC



Summary of producer decisions

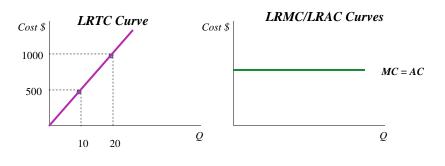
- The short-run individual supply curve summarizes the production ("supply") decisions of one individual, perfectly competitive, producer.
- The short-run industry supply curve summarizes the supply decisions by all producers in a perfectly competitive industry.

Long-run costs

- In the short-run the shape of the cost curves was determined by the fact that there was a fixed factor of production
- In the long-run:
 - $\hfill\Box$ there are no fixed factors of production
 - □ firm's scale is not fixed (could double/triple output)
 - □ firms can enter/exit the industry
- The shape of the long-run cost curves will not necessarily be the same as those in the shortrun

Long-run total cost (LRTC)

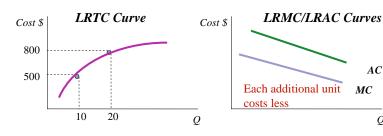
- The LRTC represents the least cost of producing each level of output (cost-output relationship)
- The shape of the LRTC curve depends on how costs vary with the scale of the firm
 - ☐ For some firms the cost of producing another unit of output decreases with the scale (size) of the firm
 - ☐ For other firms the cost of another unit of output increases with scale


Perfect competition

- The relationship between costs and scale is determined by whether the firm's long-run production function exhibits:
 - □ Constant Returns to Scale
 - □ Increasing Returns to Scale
 - □ Decreasing Returns to Scale
- Let's examine what is meant by each of these and what they imply about the shape of the longrun cost curves

Constant returns to scale

- Doubling inputs exactly doubles output
- Since the price of inputs are fixed, doubling outputs requires the firm to double it's total costs.
- What will the cost curves look like for this firm?



Increasing Returns to Scale

- Doubling inputs more than doubles outputs,
- Or, to double output requires less than a doubling of inputs
- Thus, doubling output requires less than a doubling of total costs
- This is sometimes referred to as "Economies of Scale"
 - ☐ Reduction in the per unit cost of output from large scale production

Increasing Returns to Scale

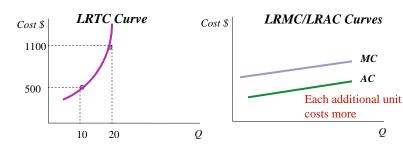
- Could be cost savings from size:
 - □ Cheaper to fly 100 people in a jumbo jet than to fly them 10 at a time
- Could be cost savings from technology:
 - □ "standardized production"
- What will the cost curves look like here?

AC

Q

Decreasing Returns to Scale

- Doubling inputs less than doubles outputs,
- Or, to double output requires more than a doubling of inputs
- Thus, doubling output requires more than a doubling of total costs
- This is sometimes referred to as "Diseconomies of Scale"
 - □ Increase in the per unit cost of output from large scale production

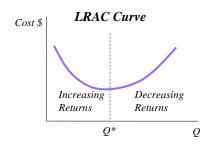

Decreasing Returns to Scale

- Could result because of Bureaucratic Inefficiency:
 - □ Lots of managers and "red tape" makes coordination difficult

MC AC

Q

- □ Coordination failure is costly
- What will the cost curves look like here?


Long-run average cost curve

- Economists believe that that long-run costs exhibit:
- Initially, increasing returns to scale
 - □ Relatively small firms are likely to realize "economies of scale"
- As output expands, decreasing returns to scale
 - □ Larger firms will eventually experience bureaucratic inefficiencies

Long-run average cost curve

This implies that the long-run average cost curve will have the following shape:

Between 0 and Q*:

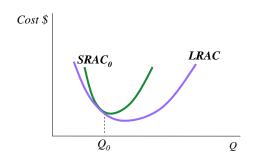
- Increasing Returns
- Average cost is decreasing

At Q*:

Constant Returns (constant costs)

Q* and above:

- Decreasing Returns
- Average cost is increasing

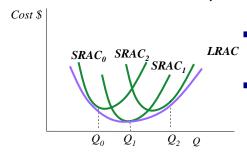

Long and short-run costs

- Will the costs of production be higher or lower in the long-run?
 - ☐ In the long-run the firm can alter both capital and labour (more flexible)
 - Since firms are cost minimizing, any change in capital (fixed cost) the firm makes in the long-run must be because it will lower costs
- Therefore, at any level of output costs will be lower in the long-run
- Exception: there will be one level of output for which the level of capital (fixed cost) in the shortrun will be the optimal level in the long-run

Long and short-run costs

Thus, the long and short-run average costs curves will look as follows

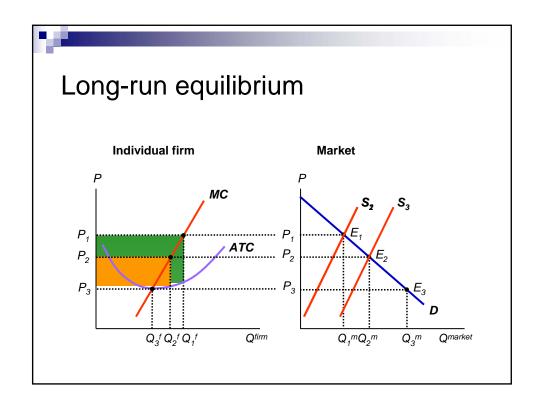
- SRAC₀ is short-run average cost if the producer chose the level of capital to minimize costs at Q₀
- The SRAC curve will be above the LRAC curve except at Q₀
- At Q₀ SRAC = LRAC


Long and short-run costs

- The shapes of the long-run and short-run cost curves look very similar
- It is important to note, however, that these shapes mean something very different in the long-run than they do in the short-run
 - □ Long-Run: The shape of the curves is determined by how costs change with the scale of the firm
 - □ Short-Run: The shape of the curves is determined by the assumption that the marginal product of the variable input (labour) eventually declines

"Envelope" theorem

- There is a different set of short-run cost curves (different optimal level of capital) for each level of output
- Each of the SRAC curves will equal the LRAC curve at one level of output



- The LRAC curve is like the "envelope" of all the SRAC curves
- The scale which minimizes LRAC is called the "Efficient Scale"

Perfect competition in the long-run

- So far, we have studied perfect competition in the short-run.
 - ☐ A perfectly competitive firm:
 - Produces the quantity at which P = MC
 - Shuts down if *P* < *AVC*
 - Makes (positive) profit if P > ATC
- If the price happened to be above the breakeven price, a perfectly competitive firm in the short run made (positive) profit.
 - ☐ Can those profits persist in the long run?
 - There is free entry and exit.

Long-run equilibrium

- What's good about long-run equilibrium in a perfectly competitive industry?
 - ☐ Goods are produced at the lowest possible cost (minimum average total cost).
- Other properties:
 - ☐ Firms make zero profits.

