Instrumental Variables & 2SLS

Economics 20 - Prof. Schuetze 1 Economics 20 - Prof. Schuetze

1

Why Use Instrumental Variables?

Instrumental Variables (IV) estimation is used when your model has endogenous x's

variables problem

2

What Is an Instrumental Variable?

 \clubsuit In order for a variable, z, to serve as a valid instrument for x, the following must be true **1.** The instrument must be exogenous - i.e. Cov(z, u) = 0-more specifically z should have no "partial" effect on y and should be uncorrelated with u 2. The instrument must be correlated with the endogenous variable x - i.e Cov(z,x)

Difference between IV and Proxy?

• With IV we will leave the unobserved variable in the error term but use an estimation method that recognizes the presence of the omitted variable • With a proxy we were trying to remove the unobserved variable from the error term e.g. IQ ◆ IQ would make a poor instrument as it would be correlated with the error in our model (ability in *u*) Need something correlated with education but uncorrelated with ability (parents education?)

More on Valid Instruments

- We can't test if Cov(z,u) = 0 as this is a population assumption
 Instead, we have to rely on common sense and economic theory to decide if it makes sense
- ♦ However, we can test if $Cov(z,x) \neq 0$ using a random sample
- Simply estimate $x = \mathbf{p}_0 + \mathbf{p}_1 z + v$, and test
 - $H_0: p_1 = 0$

Refer to this regression as the "first-stage regression"

IV Estimation in the Simple Regression Case

Inference with IV Estimation

- The IV estimator also has an approximate normal distribution in large samples
- To get estimates of the standard errors we need a slightly different homoskedasticity assumption: $E(u^2/z) = s^2 = Var(u)$ (conditioning on *z* here)

If this is true, we can show that the asymptotic variance of β1-hat is:

 $Var(\hat{\boldsymbol{b}}_{1}) = \frac{\boldsymbol{s}^{2}}{n\boldsymbol{s}_{x}^{2}\boldsymbol{r}_{x,z}^{2}}$

σ_x² is the pop variance of x
 σ² is the pop variance of u
 ρ²_{xz} is the square of the pop correlation between x and z

Inference with IV Estimation

 Each of the elements in the population variance can be estimated from a random sample

The estimated variance is then:

$$Var(\hat{\boldsymbol{b}}_{1}) = \frac{\hat{\boldsymbol{s}}^{2}}{SST_{x}R_{x,z}^{2}}$$

Whoma

Where $\sigma^2 = SSR$ from IV divided by the df, SST_x is the sample variance in *x* and the R² is from the first stage regression (*x* on *z*)

The standard error is just the square root of this

IV versus OLS estimation

Standard error in IV case differs from OLS only in the R² from regressing x on z
Since R² < 1, IV standard errors are larger
However, IV is consistent, while OLS is inconsistent, when Cov(x,u) ≠ 0
Notice that the stronger the correlation between z and x, the smaller the IV standard errors

The Effect of Poor Instruments

What if our assumption that Cov(z,u) = 0 is false?
The IV estimator will be inconsistent also
We can compare the asymptotic bias in OLS to that in IV in this case:

IV:
$$\operatorname{plim}\hat{\boldsymbol{b}}_1 = \boldsymbol{b}_1 + \frac{Corr(z,u)}{Corr(z,x)} \cdot \frac{\boldsymbol{s}_u}{\boldsymbol{s}_x}$$

OLS: plim $\tilde{\boldsymbol{b}}_1 = \boldsymbol{b}_1 + Corr(x, u) \cdot \frac{\boldsymbol{s}_u}{\boldsymbol{s}_x}$

Even if Corr(z,u) is small the inconsistency can be large if Corr(z,x) is also very small

Effect of Poor Instruments (cont)

So, it is not necessarily better to us IV instead of OLS even if z and u are not "highly" correlated • Instead, prefer IV only if Corr(z,u)/Corr(z,x) <

Corr(x, u)

Also notice that the inconsistency gets really large if z and x are only loosely correlated

Best to test for correlation in the first stage regression

11

A Note on R² in IV

- R^2 after IV estimation can be negative
- Recall that $R^2 = 1 SSR/SST$ where SSR is the residual sum of IV residuals
- SSR in this case can be larger than SST making the R^2 negative

- Thus, R² isn't very useful here and can't be used for F-tests
- Not important as we would prefer consistent estimates of the coefficients

IV Estimation in the Multiple Regression Case

- IV estimation can be extended to the multiple regression case
- Estimating: $y_1 = b_0 + b_1 y_2 + b_2 z_1 + u_1$
- Where y_2 is endogenous and z_1 is exogenous
- Call this the "structural model"
- If we estimate the structural model the coefficients will be biased and inconsistent
- Thus, we need an instrument for y_2
- Can we use z_1 if it is correlated with y_2 (we know it isn't correlated with u_1)?

Multiple Regression IV (cont)

No, because it appears in the structural model \diamond Instead, we need an instrument, z_2 , that: 1. Doesn't belong in the structural model **2.** Is uncorrelated with u_1 **3.** Is correlated with y_2 in a particular way - Now because of z_1 we need a partial correlation - i.e. for the "reduced form equation" $y_2 = \mathbf{p}_0 + \mathbf{p}_1 z_1 + \mathbf{p}_2 z_2 + v_2, \mathbf{p}_2^{-1} 0$ • If we have such an instrument and u_1 is uncorrelated with z_1 the model is "identified"

Two Stage Least Squares (2SLS)

- It is possible to have multiple instruments
 Consider the structural model, with 1 endogenous, *y*₂, and 1 exogenous, *z*₁, RHS variable
- Suppose that we have two valid instruments, z_2 and z_3
- Since z_1 , z_2 and z_3 are uncorrelated with u_1 , so is any linear combination of these
- Thus, any linear combination is also a valid instrument

Best Instrument

- The best instrument is the one that is most highly correlated with y_2
- This turns out to be a linear combination of the exogenous variables
- The reduce form equation is:

 $y_2 = \mathbf{p}_0 + \mathbf{p}_1 z_1 + \mathbf{p}_2 z_2 + \mathbf{p}_3 z_3 + v_2 \text{ or } y_2 = y_2^* + v_2$

Can think of y_2^* as the part of y_2 that is uncorrelated with u_1 and v_2 as the part that might be correlated with u_1

Thus the best IV for y_2 is y_2^*

More on 2SLS

- We can estimate y_2^* by regressing y_2 on z_1 , z_2 and z_3 – the first stage regression
- \clubsuit If then substitute $_{2}$ for y_{2} in the structural model, get same coefficient as IV
- While the coefficients are the same, the standard errors from doing 2SLS by hand are incorrect
- Also recall that since the R2 can be negative Ftests will be invalid
- Stata will calculate the correct standard error and **F**-tests

More on 2SLS (cont)

We can extend this method to include multiple endogenous variables

 However, we need to be sure that we have at least as many excluded exogenous variables
 (instruments) as there are endogenous variables

If not, the model is not identified

Addressing Errors-in-Variables with IV Estimation

Recall the classical errors-in-variables problem where we observe x_1 instead of x_1^* • Where $x_1 = x_1^* + e_1$, we showed that when x_1 and e_1 are correlated the OLS estimates are biased • We maintain the assumption that u is uncorrelated with x_1^* , x_1 and x_2 and that and e_1 is uncorrelated with x_1^* and x_2 • If we can find an instrument, z, such that Corr(z, u)= 0 and Corr(z, x_1) \neq 0, then we can use IV to

remove the attenuation bias

Example of Instrument

• Suppose that we have a second measure of $x_1^*(z_1)$ **Examples:** both husband and wife report earnings both employer and employee report earnings $\langle z_1 \rangle$ will also measure x_1^* with error \diamond However, as long as the measurement error in z_1 is uncorrelated with the measurement error in x_1, z_1 is a valid instrument

Testing for Endogeneity

Since OLS is preferred to IV if we do not have an endogeneity problem, then we'd like to be able to test for endogeneity

Suppose we have the following structural model:

 $y_1 = b_0 + b_1 y_2 + b_2 z_1 + b_3 z_2 + u$

We suspect that y_2 is endogenous and we have instruments for $y_2(z_3, z_4)$

• How do we determine if y_2 is endogenous?

Testing for Endogeneity (cont)

- 1. Hausman Test
- If all variables are exogenous both OLS and 2SLS are consistent
- If there are statistically significant differences in the coefficients we conclude that y_2 is endogenous
- 2. Regression Test
- In the first stage equation:
 - $y_2 = p_0 + p_1 z_1 + p_2 z_2 + p_3 z_3 + p_3 z_3 + v_2$
- \bullet Each of the z's are uncorrelated with u_1

Testing for Endogeneity (cont)

Testing Overidentifying Restrictions

- How can we determine if we have a good instrument -correlated with y_2 uncorrelated with u?
- \clubsuit Easy to test if z is correlated with y_2
- If there is just one instrument for our endogenous variable, we can't test whether the instrument is uncorrelated with the error (u is unobserved)
- If we have multiple instruments, it is possible to test the overidentifying restrictions
- i.e. to see if some of the instruments are correlated with the error

The OverID Test

Using our previous example, suppose we have two instruments for y₂ (z₃, z₄)
 We could estimate our structural model using only z₃ as an instrument, assuming it is uncorrelated

with the error, and get the residuals:

$$\hat{u}_1 = y_1 - \hat{b}_0 - \hat{b}_1 y_2 - \hat{b}_2 z_1 - \hat{b}_3 z_2$$

Since z_4 hasn't been used we can check whether it is correlated with u_1 -hat

• If they are correlated z_4 isn't a good instrument

The OverID Test

- We could do the same for z_3 , as long as we can assume that z_4 is uncorrelated with u_1
- A procedure that allows us to do this is:
- 1. Estimate the structural model using IV and obtain the residuals
- 2. Regress the residuals on all the exogenous variables and obtain the R^2 to form nR^2
- 3. Under the null that all instruments are uncorrelated with the error, LM ~ χ_q^2 where *q* is the number of "extra" instruments

Testing for Heteroskedasticity

- When using 2SLS, we need a slight adjustment to the Breusch-Pagan test
- Get the residuals from the IV estimation
- Regress these residuals squared on all of the exogenous variables in the model (including the instruments)

- Test for the joint significance
- Note: there are also robust standard errors in the IV setting

Testing for Serial Correlation

- Also need a slight adjustment to the test for serial correlation when using 2SLS
- Re-estimate the structural model by 2SLS, including the lagged residuals, and using the same instruments as originally
- \diamond Test if the coefficient on the lagged residual (ρ) is statistically different than zero
- Can also correct for serial correlation by doing 2SLS on a quasi-differenced model, using quasidifferenced instruments