## Multiple Regression Analysis

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \beta_{k} x_{k}+u
$$

1. Estimation

## Introduction

- Main drawback of simple regression is that with 1 RHS variable it is unlikely that $u$ is uncorrelated with $x$
- Multiple regression allows us to control for those "other" factors
- The more variables we have the more of $y$ we will be able to explain (better predictions)
- e.g. Earn $=\beta_{0}+\beta_{1}$ Educ $+\beta_{2}$ Exper $+u$
- Allows us to measure the effect of education on earnings holding experience fixed


## Parallels with Simple Regression

- $\beta_{0}$ is still the intercept
- $\beta_{1}$ to $\beta_{k}$ all called slope parameters
$u$ is still the error term (or disturbance)
Still need to make a zero conditional mean assumption, so now assume that
- $\mathrm{E}\left(u \mid x_{1}, x_{2}, \ldots, x_{k}\right)=0$
- other factors affecting y are not related on average to $x_{1}, x_{2}, \ldots, x_{\mathrm{k}}$
Still minimizing the sum of squared residuals


## Estimating Multiple Regression

The estimated equation can be written:

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\ldots+\hat{\beta}_{k} x_{k}
$$

- And we want to minimize:
$\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)^{2}$
We will now have $\mathrm{k}+1$ first order conditions
$\sum\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0$
$\sum x_{i 1}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0$
$\sum x_{i 2}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\ldots-\hat{\beta}_{k} x_{i k}\right)=0$
Etc.


## Interpreting The Coefficients

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}+\ldots+\hat{\beta}_{k} x_{k}
$$

Then we can obtain the predicted change in $y$ given changes in the $x$ variables

## A "Partialling Out" Interpretation

- Consider the case where $\mathrm{k}=2$, then

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}
$$

The estimated coefficient of $\beta_{1}$ is:
$\hat{\beta}_{1}=\left(\sum x_{i 1}-\bar{x}_{1}\right) y_{i} / \sum\left(x_{i 1}-\bar{x}\right)^{2}$

- Another way to express this same estimate is:


## "Partialling Out" continued

This implies that we estimate the same effect of $x_{1}$

1. Regressing $y$ on $x_{1}$ and $x_{2}$, and
2. Regressing $y$ on residuals from a regression of $x_{1}$ on $X_{2}$

## Simple vs Multiple Reg Estimate

- Compare the simple regression $\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}$ with the multiple regression $\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\hat{\beta}_{2} x_{2}$ Generally, $\quad \tilde{\beta}_{1} \neq \hat{\beta}_{1}$ unless :


## Assumptions for Unbiasedness

The assumptions needed to get unbiased estimates in simple regression can be restated

1. Population model is linear in parameters:
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots+\beta_{k} x_{k}+u$
2. We can use a random sample of size $n$ from the population model, $\left\{\left(x_{i 1}, x_{i 2}, \ldots, x_{i k}, y_{i}\right): i=1,2, . ., n\right\}$

- i.e. no sample selection bias

Then the sample model is
$y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\ldots+\beta_{k} x_{i k}+u_{i}$

## Assumptions for Unbiasedness

3. $\mathrm{E}\left(u \mid x_{1}, x_{2}, \ldots x_{k}\right)=0$
4. None of the $x$ 's is constant, and there are no exact linear relationships among them

## Examples of Perfect Collinearity

1. $x_{1}=2\left(x_{2}\right)$ - One of these is redundant
2. The linear combinations can be more complicated
3. Including income and income ${ }^{2}$ does not violate this assumption (not an exact linear function)

## Too Many or Too Few Variables

Assumptions 1-4 can be used to show that:
$E\left(\hat{\beta}_{j}\right)=\beta_{j}, j=\{0,1, \ldots, \mathrm{k}\}$
i.e. that the estimated parameters are unbiased

- What happens if we include variables in our specification that don't belong (over-specify)?
- What if we exclude a variable from our specification that does belong?


## Omitted Variable Bias

Suppose the true model is given by

$$
y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+u
$$

But we estimate
$\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}+u$, then
$\tilde{\beta}_{1}=\frac{\sum\left(x_{i 1}-\bar{x}_{1}\right) y_{i}}{\sum\left(x_{i 1}-\bar{x}_{1}\right)^{2}}$
Recall the true model, so that
$y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+u_{i}$

## Omitted Variable Bias (cont)

## So the numerator becomes

$$
\sum\left(x_{i 1}-\bar{x}_{1}\right)\left(\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+u_{i}\right)
$$

recall: $\sum\left(x_{i}-\bar{x}\right)=0$, and $\sum\left(x_{i}-\bar{x}\right) x_{i}=\sum\left(x_{i}-\bar{x}\right)^{2}$

- Then, the numerator becomes


## Omitted Variable Bias (cont)

so, $\tilde{\beta}=\beta_{1}+\beta_{2} \frac{\sum\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}}{\sum\left(\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)}+\frac{\sum\left(x_{i 1}-\bar{x}_{1}\right) u_{i}}{\sum\left(\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)}$
Taking expectations (conditional on $x$ 's) and recalling that $\mathrm{E}\left(u_{\mathrm{i}}\right)=0$, we have

## Omitted Variable Bias (cont)

How might we interpret the bias?

- Consider the regression of $x_{2}$ on $x_{1}$ :

$$
\tilde{x}_{2}=\tilde{\delta}_{0}+\tilde{\delta}_{1} x_{1}
$$

then $\tilde{\delta}_{1}=\frac{\sum\left(x_{i 1}-\bar{x}_{1}\right) x_{i 2}}{\left.\sum\left(x_{i 1}-\bar{x}_{1}\right)^{2}\right)}$

The omitted variable bias equals zero if:

## Summary of Direction of Bias

* The direction of the bias depends on:

1. The sign of $\delta_{1}$
2. The sign of $\beta_{2}$

Summary Table

|  | $\operatorname{Corr}\left(x_{1}, x_{2}\right)>0$ | $\operatorname{Corr}\left(x_{1}, x_{2}\right)<0$ |
| :--- | :--- | :--- |
| $\beta_{2}>0$ |  |  |
| $\beta_{2}<0$ |  |  |

## Omitted Variable Bias Summary

The size of the bias is also important

- Typically we don't know $\beta_{2}$ or the correlation but we can usually make an educated guess whether these are positive or negative

What about the more general case ( $\mathrm{k}+1$ variables)?

- Technically we can only sign the bias of the more general case if all the $x$ 's are uncorrelated


## The More General Case

- For example, suppose that the true model is:
$y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+u$
and we estimate :
$\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}+\tilde{\beta}_{2} x_{2}$


## Variance of the OLS Estimators

We now know that the sampling distribution of our estimate is centered around the true parameter

- Want to think about how spread out this distribution is
Much easier to think about this variance under an additional assumption, so
Assumption 5:
Assume $\operatorname{Var}\left(u \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\sigma^{2}$
(Homoskedasticity)
- This implies that $\operatorname{Var}\left(y \mid x_{1}, x_{2}, \ldots, x_{k}\right)=\sigma^{2}$


## Variance of OLS (cont)

- The 4 assumptions for unbiasedness, plus this homoskedasticity assumption are known as the Gauss-Markov assumptions
- These can be used to show:
$\operatorname{Var}\left(\hat{\beta}_{j}\right)=\frac{\sigma^{2}}{\operatorname{SST}_{j}\left(1-R_{j}^{2}\right)}$


## Components of OLS Variances

Thus, how precisely we can estimate the coefficients (variance) depends on:

1. The error variance $\left(\sigma^{2}\right)$ :
2. The total sample variation in xj (SST):

## Components of OLS Variances

3. The linear relationships among the independent variables $\left(\mathrm{R}_{\mathrm{j}}{ }^{2}\right)$ :

- The problem of highly correlated x variables is called "Multi-Collinearity"


## Example of Multi-Collinearity

Suppose that you want to try to explain differences in mortality rates across different states

- Might use variation in medical expenditures across the states
- Problem?


## Misspecified Models

- Consider again the misspecified model:
$\tilde{y}=\tilde{\beta}_{0}+\tilde{\beta}_{1} x_{1}$
- We showed that the estimate of $\beta_{1}$ is biased if $\beta_{2}$ does not equal zero and that including $x_{2}$ in this model did not bias the estimate even if $\beta_{2}=0$
Therefore, why not just include $\beta_{2}$ ?


## Misspecified Models (cont)

Thus, $\operatorname{Var}\left(\tilde{\beta}_{1}\right)<\operatorname{Var}\left(\hat{\beta}_{1}\right)$

- Unless $x_{1}$ and $x_{2}$ are uncorrelated $\left(\mathrm{R}_{\mathrm{j}}{ }^{2}=0\right)$ then they are the same
* Thus, assuming that $x_{1}$ and $x_{2}$ are not uncorrelated $\beta_{2}=0$ :
$\beta_{2}$ not equal to 0:


## Estimating the Error Variance

We don't know what the error variance, $\sigma^{2}$, is, because we don't observe the errors, $u_{\mathrm{i}}$

- What we observe are the residuals, $\hat{u}_{\mathrm{i}}$
- We can use the residuals to form an estimate of the error variance as we did for simple regression
$\hat{\sigma}^{2}=\left(\sum \hat{u}_{i}^{2}\right) /(n-k-1)$
$=S S R / d f$


## Error Variance Estimate (cont)

Thus, an estimate of the standard error of the coefficients is:
se $\left(\hat{\beta}_{j}\right)=\hat{\sigma} /\left[\operatorname{SST} T_{j}\left(1-R_{j}^{2}\right)\right]^{7 / 2}$

