Simultaneous Equations

$\diamond y_{1}=\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{1}$
$\diamond y_{2}=\alpha_{2} y_{1}+\beta_{2} z_{2}+u_{2}$

Simultaneity

Simultaneity is a specific type of endogeneity problem
*Here, the explanatory variable is jointly determined with the dependent variable
As with other types of endogeneity, OLS estimates would be biased and inconsistent
\diamond IV estimation can be used to solve this problem
*There are some special issues to consider with simultaneous equations models (SEM)

Supply and Demand Example

- Let's start with an equation you'd like to estimate, say a labor supply function
$-h_{s}=\alpha_{l} w+\beta_{l} z+u_{l}$
Where w is the wage and z is a supply shifter (e.g. non-labor income or number of children)
- We call this a structural equation - it's derived from economic theory and has a causal interpretation where w directly affects h_{s}

Example (cont)

Problem:

We can't just regress observed hours on wage, because observed hours and wages are determined by the equilibrium of supply and demand
*i.e. we only observe equilibrium wages

- Thus, we must also consider a second structural equation -- the labor demand function
$\rangle h_{d}=\alpha_{2} w+u_{2}$
* May also have shift variables (e.g. price of capital)
- So hours are determined by a SEM

Example (cont)

*Notice that both h and w are endogenous because they are determined by the equilibrium of supply and demand
*However, z is exogenous
\diamond We need this exogenous supply shifter to allow us to identify the structural demand equation

* With no observed demand shifters, supply is not identified and cannot be estimated
We can show why this is the case graphically

Identification of Demand Equation

Using IV to Estimate Demand

- We can, therefore, estimate the structural demand equation, using z as an instrument for w
First stage equation is $w=\pi_{0}+\pi_{1} z+v_{2}$
- Second stage equation is $h=\alpha_{2}+u_{2}$
\checkmark Thus, 2SLS provides a consistent estimator of α_{2}, the slope of the demand curve
\checkmark We cannot estimate α_{1}, the slope of the supply curve unless we can also find a demand shifter that doesn't belong in the supply equation

The General SEM

\diamond More generally, suppose you want to estimate the structural equation: $y_{l}=\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{1}$
where, $y_{2}=\alpha_{2} y_{1}+\beta_{2} z_{2}+u_{2}$
Thus, $y_{2}=\alpha_{2}\left(\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{I}\right)+\beta_{2} z_{2}+u_{2}$
So, $\left(1-\alpha_{2} \alpha_{1}\right) y_{2}=\alpha_{2} \beta_{1} z_{1}+\beta_{2} z_{2}+\alpha_{2} u_{1}+u_{2}$,
\diamond We can rewrite this as the reduced form equation:

$$
y_{2}=\pi_{1} z_{1}+\pi_{2} z_{2}+v_{2}
$$

The General SEM (continued)

\checkmark Now, since v_{2} is a linear function of u_{1}, y_{2} is correlated with the error term $\left(u_{l}\right)$ in the structural equation (i.e. y_{2} is endogenous)
Thus, estimating the structural equation for y_{1} by OLS will lead to a biased estimate of α_{1} - called simultaneity bias

- The sign of the bias is complicated, but can use the simple regression case as a rule of thumb
- In the simple regression case, the sign of the bias is the same as $\alpha_{2} /\left(1-\alpha_{2} \alpha_{1}\right)$

Identification of General SEM

Δ Let z_{1} be all the exogenous variables in the first equation, and z_{2} be all the exogenous variables in the second equation
It's okay for there to be overlap in z_{1} and z_{2}
*To identify equation 1 , there must be some variables in z_{2} that are not in z_{1}
To identify equation 2 , there must be some variables in z_{1} that are not in z_{2}

- We refer to this as the "order condition"

Rank and Order Conditions

- Also, in order to get identification we also need to satisfy the rank condition which says more than the order condition
*The exogenous variable excluded from the first equation must also have a non-zero coefficient in the second equation for the rank condition to hold
Note that the order condition clearly holds if the rank condition does - there will be an exogenous variable for the endogenous one

Estimation of the General SEM

Estimation of SEM is straightforward

* The instruments for 2SLS are the exogenous variables from both equations
- Can extend the idea to systems with more than 2 equations
*For a given identified equation, the instruments are all of the exogenous variables in the whole system

