

Economics 20 - Prof. Schuetze

Supply and Demand Example

- Let's start with an equation you'd like to estimate, say a labor supply function
- ◆ Where w is the wage and z is a supply shifter (e.g. non-labor income or number of children)

Economics 20 - Prof. Schuetze

2

Example (cont)

Problem:

- Thus, we must also consider a second structural equation -- the labor demand function
- $h_d = \alpha_2 w + u_2$
- May also have shift variables (e.g. price of capital)
- So hours are determined by a SEM

Economics 20 - Prof. Schuetze

Using IV to Estimate Demand

- ♦ We can, therefore, estimate the structural demand equation, using z as an instrument for w
- First stage equation is $w = \pi_0 + \pi_1 z + v_2$
- Second stage equation is $h = \alpha_2 \hat{w} + u_2$
- Thus, 2SLS provides a consistent estimator of α_2 , the slope of the demand curve

Economics 20 - Prof. Schuetze

7

The General SEM

- More generally, suppose you want to estimate the structural equation: $y_1 = \alpha_1 y_2 + \beta_1 z_1 + u_1$
- where, $y_2 = \alpha_2 y_1 + \beta_2 z_2 + u_2$
- Thus, $y_2 = \alpha_2(\alpha_1 y_2 + \beta_1 z_1 + u_1) + \beta_2 z_2 + u_2$
- So, $(1 \alpha_2 \alpha_1)y_2 = \alpha_2 \beta_1 z_1 + \beta_2 z_2 + \alpha_2 u_1 + u_2$,
- We can rewrite this as the reduced form equation:

Economics 20 - Prof. Schuetze

The General SEM (continued)

- Now, since v_2 is a linear function of u_1 , y_2 is correlated with the error term(u_1) in the structural equation (i.e. y_2 is endogenous)
- The sign of the bias is complicated, but can use the simple regression case as a rule of thumb
- ◆ In the simple regression case, the sign of the bias is the same as

Economics 20 - Prof. Schuetze

9

Identification of General SEM

- Let z_1 be all the exogenous variables in the first equation, and z_2 be all the exogenous variables in the second equation
- It's okay for there to be overlap in z_1 and z_2
- To identify equation 1,
- To identify equation 2,
- We refer to this as the "order condition"

Economics 20 - Prof. Schuetze

Rank and Order Conditions

- ◆ Also, in order to get identification we also need to satisfy the rank condition which says more than the order condition
- Note that the order condition clearly holds if the rank condition does there will be an exogenous variable for the endogenous one

Economics 20 - Prof. Schuetze

11

Estimation of the General SEM

- Estimation of SEM is straightforward
- The instruments for 2SLS are the exogenous variables from **both equations**
- Can extend the idea to systems with more than 2 equations
- For a given identified equation, the instruments are all of the exogenous variables in the whole system

Economics 20 - Prof. Schuetze