Simultaneous Equations

$\oint y_{1}=\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{1}$
$y_{2}=\alpha_{2} y_{1}+\beta_{2} z_{2}+u_{2}$

Simultaneity

Simultaneity is a specific type of endogeneity problem

- Here, the explanatory variable is jointly determined with the dependent variable
- As with other types of endogeneity, OLS estimates would be biased and inconsistent
IV estimation can be used to solve this problem
There are some special issues to consider with simultaneous equations models (SEM)

Supply and Demand Example

Let's start with an equation you'd like to estimate, say a labor supply function

- $h_{s}=\alpha_{l} w+\beta_{l} z+u_{l}$
- Where w is the wage and z is a supply shifter (e.g. non-labor income or number of children)

Example (cont)

Problem:

- Thus, we must also consider a second structural equation -- the labor demand function
$\forall h_{d}=\alpha_{2} w+u_{2}$
May also have shift variables (e.g. price of capital)
So hours are determined by a SEM

Example (cont)

Notice that both h and w are endogenous because they are determined by the equilibrium of supply and demand

- However, z is exogenous

Identification of Demand Equation

Using IV to Estimate Demand

- We can, therefore, estimate the structural demand equation, using z as an instrument for w
First stage equation is $w=\pi_{0}+\pi_{1} z+v_{2}$
- Second stage equation is $h=\alpha_{2} \hat{w}+u_{2}$

Thus, 2SLS provides a consistent estimator of α_{2}, the slope of the demand curve

The General SEM

- More generally, suppose you want to estimate the structural equation: $y_{1}=\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{1}$
where, $y_{2}=\alpha_{2} y_{1}+\beta_{2} z_{2}+u_{2}$
Thus, $y_{2}=\alpha_{2}\left(\alpha_{1} y_{2}+\beta_{1} z_{1}+u_{I}\right)+\beta_{2} z_{2}+u_{2}$
So, $\left(1-\alpha_{2} \alpha_{1}\right) y_{2}=\alpha_{2} \beta_{1} z_{1}+\beta_{2} z_{2}+\alpha_{2} u_{1}+u_{2}$,
- We can rewrite this as the reduced form equation:

The General SEM (continued)

\diamond Now, since v_{2} is a linear function of u_{1}, y_{2} is correlated with the error term $\left(u_{1}\right)$ in the structural equation (i.e. y_{2} is endogenous)

- The sign of the bias is complicated, but can use the simple regression case as a rule of thumb
- In the simple regression case, the sign of the bias is the same as

Identification of General SEM

Let \boldsymbol{z}_{1} be all the exogenous variables in the first equation, and \mathbf{z}_{2} be all the exogenous variables in the second equation

- It's okay for there to be overlap in \mathbf{z}_{1} and \mathbf{z}_{2}
- To identify equation 1 ,
- To identify equation 2 ,

We refer to this as the "order condition"

Rank and Order Conditions

Also, in order to get identification we also need to satisfy the rank condition which says more than the order condition

Note that the order condition clearly holds if the rank condition does - there will be an exogenous variable for the endogenous one

Estimation of the General SEM

Estimation of SEM is straightforward

- The instruments for 2SLS are the exogenous variables from both equations
- Can extend the idea to systems with more than 2 equations
For a given identified equation, the instruments are all of the exogenous variables in the whole system

