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Estimating Stable Measured Values and Detecting
Anomalies in Groundwater Geochemistry Time Series Data
Across the Athabasca Oil Sands Area, Canada

John G. Manchuk,1,7 Jean S. Birks,2 Cynthia N. McClain,3 Guy Bayegnak,4 John J. Gibson,5

and Clayton V. Deutsch6

Received 1 May 2020; accepted 24 December 2020

Regional groundwater monitoring in the Athabasca region of Alberta, Canada, provides
information on groundwater quality and geochemical changes over time, including data
useful for evaluating potential impacts of industrial activity such as oil sands mining and
in situ operations. Data collected from over 5000 wells from the 1950s to 2014, including 161
wells from government�s monitoring network, were used to develop and apply bootstrap
techniques for the detection of changes in groundwater geochemistry over time and at
specific points in time. Increasing temporal anomalies were identified in Cl, TDS, B, and
naphthenic acids in the McMurray formation across 2003 and 2008, while decreasing
anomalies were found for SO4. Temporal variance for 15 indicators was quantified for a
smooth bootstrap approach to arrive at stable values representative of the most recent
samples taken from wells in the study area. Stable values revealed sampling bias in the
Devonian, Grand Rapids, Empress, Channel Beverly, and Muriel Lake formations sug-
gesting expansion of sampling may be necessary. Although temporal anomalies were found
in the McMurray formation, sampling bias was not identified. The entropy and relative
magnitude of time series were evaluated to identify candidate wells for continued obser-
vations, which consist of wells with low measurements and low entropy that are near active
industry lease boundaries. Temporal anomalies, stable values, and entropy were combined
into type-well information to provide plots for visual inspection and interpretation.
Stable values are useful for regional mapping, for detecting future changes and trends, and
for identifying areas of interest warranting further investigation.
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INTRODUCTION

Analysis of temporal geochemistry samples ta-
ken from hydrostratigraphic units surrounding
industrial activity is an important measure for
detecting changes in the natural composition of
groundwater. Commonly, due to lag between
industrialization and development of regional mon-
itoring policy, it can be difficult to characterize pre-
development conditions representative of the natu-
ral composition of groundwater. In such reactive
scenarios, it is often only practical to estimate the
water composition at the present time, although
such information remains useful for detecting future
changes. This is the case for the Athabasca oil sands
area where activity related to bitumen mining from
the McMurray Formation began in the 1930s (Par-
ker and Tingley 1980), whereas the first systematic
groundwater sampling initiative was not conducted
until the 1950s (Akena and Christian 1981). While
substantial industrial activity did not begin until the
late 1960s, this preceded establishment in 1976 of the
first systematic regional water quality monitoring
program by the Alberta Oil Sands Environmental
Research Program (AOSERP). Surficial mining
operations expanded further from 2000 to 2013, and
in situ production surpassed mined oil sands pro-
duction in 2012. Implementation and maintenance
of such a monitoring program is important because
there are potential ecological and human health
concerns, for example due to polycyclic aromatic
hydrocarbons (PAH) and arsenic releases associated
with surface and in situ industrial activity (Kelly
et al. 2009; Javed and Siddique 2016). To address
this, a Groundwater Management Framework
(GWMF) and supporting strategic plans were re-
leased by Alberta Environment and Parks as a part
of the Lower Athabasca Regional Plan to manage
the cumulative effects of activities in the region
(AEP 2012). As well, the industry funded (up to
$50 M/year) joint Federal Provincial Oil Sands
Monitoring Program is responsible for design and
implementation of environmental monitoring to
track baseline conditions and environmental impacts
in the region (Government of Alberta 2017),
including groundwater monitoring. This Oil Sands
Monitoring Program informs development of policy
and plans through integrated reporting and analysis
of environmental condition.

A substantial confounding factor limiting ability
to detect changes in water quality is the presence of
gradients in geochemical composition that exist due

to factors unrelated to anthropogenic activity. This
pertains to naturally occurring elements that directly
impact an aquifer. Detection of compounds or those
without natural sources in the region are likely re-
lated to industrial or agricultural activity; however,
this is challenging in the oil sands region because
many of the solutes and organics associated with oil
sands process water are also naturally present in
groundwater. Irrespective of the cause of a detected
change, further analysis would be necessary to
identify a source as natural or industrial. A statistical
technique to detect changes is a critical component
to a temporal water quality monitoring program.
Research into change-point detection has led to
several techniques related to water quality time
series (Ba and McKenna 2015). Several categories of
change-point detection methods exist, with fre-
quentist methods being the most popular due to
their simplicity and success rate (Ghosh and Sen
1991). The sequential probability ratio test of Wald
(1945), one and two-sided sequential cumulative
schemes of Page (1954) and Lorden (1971), and
likelihood ratio tests (Siegmund and Venkatraman
1995) are examples of frequentist methods for
change-point detection. These and associated
methods have been compared by Roberts (1966) and
continue to be compared in more recent research
such as Ba and McKenna (2015) and Breitenberger
et al. (2018). A variety of other categories exist that
utilize machine learning strategies such as support
vector machines (SVM) and artificial neural net-
works (ANN) among others. Lauzon and Lence
(2010) use ANNs to detect shifts in time series data,
where a shift is analogous to a change-point. SVMs
were utilized by Camci (2010) for the change-point
detection problem for increases or decrease in the
mean or variance of a time series.

Considering that a change-point is a point in
time where a statistic has increased or decreased, it
is also likely that other classical techniques may be
viable. If such a point is assumed known, the prob-
lem is analogous to hypothesis testing for a differ-
ence in the mean, or a difference in the variance of a
sample distribution. The classical Student-t test is
relevant for certain problems (Johnson and Bhat-
tacharyya 1996). A variety of other parametric tests
are available for comparing means of two possibly
correlated distributions. Such tests rely on assump-
tions about the shape of the generating distributions
and stationarity, which may not be applicable to
water quality monitoring samples, in particular,
those with temporal trends, noise, and censoring.
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Nonparametric methods such as bootstrap tech-
niques (Efron 1979; Hardle et al. 2003) are applied
to a number of problems in water quality monitor-
ing. An autoregressive moving average (ARMA)
bootstrap approach was used by Nordgaard and
Grimvall (2006) for conducting Mann–Kendall tests
for the presence of trends (Mann 1945; Kendall
1975). Anttila et al. (2012) use moving block boot-
strap simulations to evaluate sampling errors for
quantifying temporal representativeness of water
quality data. Resampled bootstrapping was used by
Keum and Kaluarachchi (2015) to estimate confi-
dence intervals of incremental dissolved solids yields
based on a SPARROW transport model. Other
types of nonparametric techniques have been ap-
plied to groundwater monitoring as well (Helsel and
Hirsch 2002); for example, generalized least squares
and the Tukey–Kramer method for mean compar-
ison were used by Rodvang et al. (2004) to assess
changes in ground water quality in southern Alberta.

For the Athabasca Oil Sands Groundwater
Monitoring Program (AOS-GWMP), water quality
time series sampling has been relatively infrequent
and inconsistent as compared to many examples
found in the literature. For example, online moni-
toring networks can utilize in situ sensors to collect
data anywhere from monthly down to daily or
hourly frequency, yielding relatively dense time
series for certain parameters such as turbidity,
electrical conductivity, pH, temperature, ammonia-
N, nitrate-N and phosphate (Iwanyshyn et al 2009).
In contrast, time series from the AOS-GWMP are
sampled every 4 months or longer and somewhat
inconsistently, leading to extended periods of inac-
tive sampling. Samples below detection limit as well
as noise are concerns for analysis; hence, this work
utilized nonparametric resampling bootstrap ap-
proaches to test for the significance of manually
defined temporal change-points. The bootstrap-t
approach was used to conduct a two-tailed t-test for
the difference in time series before and after a
potential change-point (DiCiccio and Efron 1996).
Due to limited sample sizes, smoothing methods
were also utilized (Polansky 2000) along with spatial
data aggregation that is characteristic of block
bootstrap techniques applied in spatial and temporal
domains (Lahiri 1999; Buhlmann 2002).

In addition to testing for change-point signifi-
cance, quantifying stable measured values at the
present time is important for water quality moni-
toring projects. Noise observed in time series of
water quality measurements can be related to short-

term environmental events, seasonal variation,
localized concentration gradients, ion distribution,
and other natural processes that must be considered
to provide a stable reference value. Sampling prac-
tices and laboratory equipment may also contribute
to noise. Establishing groundwater composition at
the present time provides a baseline for detecting
changes or for use as initial conditions for numerical
water quality modeling (Palmer 2001). Defining a
spatial–temporal water quality model would provide
insight into the movement of groundwater as well as
give some capability to predict future changes;
however, defining the necessary initial and boundary
conditions and tuning such a model to match his-
torical water quality measurements is a daunting
task. Such a model would be relevant to identifying
contaminant sources and also for planning future
monitoring activity including the placement of new
monitoring wells and revision of sampled variables
at existing sites.

For the variables of interest, sample availability
and a statistical analysis of the temporal distribu-
tions is performed to identify major time intervals of
data collection and important intervals for detection
of changes. A bootstrap-t approach (DiCiccio and
Efron 1996) is used afterward to test for time-based
anomalies or changes in the magnitude of key vari-
ables. The results from time anomaly detection
suggest that a viable approach for estimating
stable measured values of the variables is a smooth
bootstrap approach with a variance derived from the
time dimension. Sampling distributions are analyzed
to assign sampling scores to each of the monitoring
wells to identify areas considered interesting, that is,
areas that are significantly different from the global
distributions and that could benefit from additional
monitoring.

MATERIALS AND METHODS

Dataset

The groundwater quality monitoring program
data consist of spatial–temporal samples recorded
from 1958 to 2014 covering a large portion of the
Alberta oil sands resource, see Figure 1. Due to di-
verse hydrogeological conditions and development
pressures, the region can be divided into three dis-
crete areas: the Northern Athabasca Oil Sands
(NAOS), Southern Athabasca Oil Sands (SAOS),
and the Cold Lake-Beaver River (CLBR). The da-
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taset consists of samples from over 5000 wells that
are categorized as industry or government wells,
with the latter being monitored on behalf of Alberta
Environment and Parks (AEP) by contractors. One

hundred sixty-one wells are part of AEP�s active
monitoring network (Fig. 1). Water chemistry sam-
ples were obtained from wells drilled into various
aquifers and groundwater sources. Bedrock forma-

Figure 1. Distribution of oil sands monitoring wells (MW) (triangles) and baseline data (circles) for the main hydrostratigraphic units in

the region. Surficial deposits includes all Quaternary and Neogene formations including undifferentiated overburden, while Channel wells

show wells specifically identified as being in channel deposits. Image from Birks et al. (2019).
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tions such as the Devonian, Clearwater, and the
McMurray were sampled as well as surficial sands
and undifferentiated overburden material. Five
hundred sixty-four different variables were sampled
in the network, albeit inconsistently, and not nec-
essarily for the purposes of the monitoring network
as it pertains to industrial activity.

Data sources were provided by the Alberta
Environmental Monitoring, Evaluation and
Reporting Agency (AEMERA), AEP, and Alberta
Energy Regulator (AER) or obtained from publi-
cally available datasets (e.g., Environmental Impact
Assessments [EIA�s]). Where necessary, data were
obtained from the following additional sources: a
compilation by AEMERA for the GWMF; a recent
monitoring report done by Matrix Solutions Inc.
(2015a, b); and data from EIA�s available from AEP.
Data requests can be submitted to
AEP.GOWNinfo@gov.ab.ca. Ion balances were
determined for each groundwater observation and
samples with less than 10% error were kept in the
dataset. A pH criterion of pH> 6 and pH< 9.2 was
used as a quality control criterion to eliminate
samples that were not representative of groundwater
formation conditions.

Indicators considered for this paper consist of
those of relevance for human or ecological health,
associated with natural or industrial contamination,
or which have been assigned by the GWMF critical
upper thresholds, called interim triggers that indi-
cate water quality concerns for investigation (AEP
2012; Matrix 2015a, b; Birks et al. 2019). Fourteen of
the indicators were assigned interim triggers by AEP
such as carcinogenic organic components of bitumen
or process waters from oil sands mining and mobi-
lized arsenic from in situ operations. Indicators used
for examples in this work, denoted the indicators of
interest, include total dissolved solids (TDS), sodium
(Na), chloride (Cl), sulfate (SO4), arsenic (As), silica
(Si), nitrogen (N), boron (B), naphthenic acids
(NA), temperature (T), and dissolved and total or-
ganic carbon (DOC, TOC). Two variants of N were
sampled: as dissolved nitrate (NO3) and as ammonia
(NH3). Phenols were also assigned an interim trigger
by AEP; however, their data quality is not of a
sufficient standard for analysis. Two specific PAH
indicators categorized with the highest proportion of
samples above detection were pyrene (PY) and
naphthalene (NAPH). Although these are not
specific indicators in the GWMF, they are included
in the analysis that follows. Sample availability of
these indicators was assessed spatially and tempo-

rally. Availability is measured in terms of the num-
ber of wells that had a particular indicator sampled,
and also in terms of the total number of samples
available. The number of wells gives an indication as
to the spatial coverage of an indicator, with more
wells generally indicating better coverage. Spatial
coverage is confounded by clustering and stratifica-
tion from different formations. The total number of
samples for a given indicator provides a general idea
of the sample support for calculating associated
statistics.

Groundwater quality samples are collected
from monitoring wells that target different strati-
graphic layers encountered in the subsurface that
form hydrostratigraphic units. Different units may
be independent if groundwater and/or surface water
are separated by an impermeable barrier such as a
shale layer, or they may communicate if such bar-
riers do not exist or if zones with elevated perme-
ability associated with faults or fractures are present.
Examples of hydrostratigraphic units that are mined
in the Athabasca region include the McMurray and
Wabiskaw Formations; those developed via in situ
methods include the McMurray and Wabiskaw for-
mations; and units of interest as sources of non-sal-
ine groundwater include surficial deposits, buried
channel deposits, and portions of the McMurray,
Clearwater and Grand Rapids formations in the
NAOS and SAOS regions as well as the Sand River,
Ethel Lake, Bonnyville, Muriel Lake, and Empress
formations of the CLBR area (Fig. 1).

Note that surficial sediments are unconsolidated
glacial and pre-glacial gravels, fluvial sands, tills and
lacustrine clays. These are also called surficial de-
posits, or drift and include surficial sands, undiffer-
entiated overburden and channels. The locations of
mapped thalwegs of major channels are shown in
Figure 1. The thickness of surficial sediments gen-
erally decreases toward the north ranging from 10 to
30 m thick. Surficial sediments can exceed 100 m in
deeply incised channel formations eroded into bed-
rock (for example, the Helina, Beverly, and Empress
Channels). In the Cold Lake Beaver River region,
multiple Quaternary aquifers composed of surficial
sediments, alternating with aquitard units, have been
defined (Andriashek 2003). These formations in-
clude Sand River, Ethel Lake, Bonnyville, Muriel
Lake, and the Empress formation, which is the lar-
gest Quaternary aquifer in the CLBR region and is
primarily composed of coarse fluvial sediments.
Bedrock of Cretaceous age is comprised of a sedi-
mentary sequence that dips to the southwest and
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subcrops in the greater Fort McMurray area. Aqui-
fers of the Manville Group are used as industrial,
low-quality water sources and include the Grand
Rapids, Clearwater, and McMurray formations. The
McMurray formation is mined for bitumen deposits.
Cretaceous bedrock is unconformably underlain by
Devonian limestone and evaporites (e.g., halite and
anhydrite) which subcrop along the valley walls of
the Athabasca and Clearwater rivers and have
formed dissolution and collapse features creating
vertical connectivity for migration of high TDS wa-
ters. Figure 2 shows a schematic cross section with
general groundwater flow directions. For more re-
view of geology in the region, refer to Ranger and
Gingras (2003). For more on groundwater, refer to
Bachu et al. (1993).

Due to the areal extent of approximately
400 km north–south by 200 km fast–west (142,000
km2) and depth of sampling ranging from near sur-
face to roughly 600 m depth, a significant amount of
heterogeneity is encountered adding to the com-
plexity of analysis. Indicator concentrations may
vary by several orders of magnitude across the area,
for example, TDS ranges from 1 mg/L to over
400,000 mg/L (Fig. 3).

Availability was checked by hydrostratigraphic
units as they define the aquifers that are geologically
unique in terms of spatial extent, rock properties,
water, and bitumen contents. However, it is possible
that aquifers are connected either through direct
contact in the depositional hierarchy, or through
open faults and collapse features that are typical of
the area. Availability of indicators by sample count
is provided in Figure 4. Not all indicators are sam-
pled from all units, and not all indicators are sam-
pled equally within each unit. Units are presented

according to their geological succession, from the
youngest to the oldest, younger units typically shal-
lower than older units; however, due to the geolog-
ical processes such as hiatus, tectonics, dissolution,
and erosion for example, the relationship between
depth and age may not always be respected. For
example, the McMurray formation may occur near
or at ground surface where it outcrops and is typi-
cally targeted for oil sands recovery to a depth of
75 m or greater where in situ operations are practi-
cal. Naphthalene and pyrene are above detection in
a large number of units, and most are above detec-
tion in the surficial units, Clearwater, Devonian, and
McMurray formations.

Temporal availability of the indicators was also
assessed. Analysis quantified the number of samples
that were available for each indicator and for any
given sampling year, with time ranging from 1958 to
2014, see Figure 5. Prior to 1958, sampling was rare

Figure 2. Schematic cross section (not to scale) showing general groundwater flow directions.

Figure 3. Histogram of TDS from the AOS-GWMP.
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and sporadic, rendering a very low confidence in the
data. TDS, Cl, and SO4 were measured consistently
for a much longer time span than the other indica-

tors of interest, while other indicators, including Na,
NH3, TOC, As, B, Si, NAPH, PY, and NA, were
measured infrequently prior to 1990. Temporal

Figure 4. Availability of indicators of interest colored by the number of samples by hydrostratigraphic unit for all wells (top) and AEP�s
active monitoring wells (bottom). An x denotes no data; bullets indicate all samples were below detection.
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trends in sampling are observed in Figure 5 includ-
ing: from 1997 to 2007 a period of increased sam-
pling is observed compared to any other interval for
all wells combined; sampling appears to be consis-
tent from 2012 and on; for AEP�s active monitoring
wells, a significant gap in monitoring data exists from
1980 to 2008 and an increasing trend in sampling is
clear from 2008 to 2014, suggesting progress toward
expanding the network. Since 2010, the indicators
that are the focus of this work were entirely sampled
from AEP�s active monitoring well network. Points
of significant drops in sampling across all wells oc-
curred from 1986 to 1990, in 2003, and in 2008. At
least 10 out of 12 indicators have been sampled be-
tween 1992 and 2014.

Sample Variance

Understanding the quality of the sampling ai-
ded in method selection for time anomaly tests and
establishing stable estimates of measurements.
Consistency of sampling was evaluated using run
lengths and variability was quantified using a nugget
effect calculated in the time dimension. The occur-
rence of short time series was far greater than long
time series in the sample data. The global distribu-
tion of time series lengths evaluated as run lengths
with different break intervals was computed for the
indicators of interest combined (see Figure 6). Break
intervals are time gaps where the run terminates if a
gap longer than the break is encountered. A 1-year
break has little effect, while a 1-month break con-

Figure 5. Timeline of indicators of interest from 1958 to 2014 for all wells (top) and AEP�s active monitoring wells (bottom). An x

indicates no samples. Numbers along the top indicate wells sampled in that year for all variables combined. Numbers at the right indicate

(total samples, total wells) sampled for each indicator over the time span.
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siderably reduces the number of time series lengths
that are over five to ten samples long. The average
time interval between sampling is 6 months for
approximately converting the run lengths into time.
There are very few runs with more than 20 points in
the data, where beyond this length there are no
more than 40 occurrences for any given length.

Figure 6 shows the run length distributions for
the indicators of interest with a break interval (time
separating consecutive samples) of 2 years. Values
are cumulative in nature in that the number of run
lengths of size x is equal to the sum of all runs of size
y � x. For example, for temperature, there are
roughly 15 runs or time series with a length of at
least 30 points, or for Si, there are two time series
with run lengths of at least 16. Two groups of run-
length distributions are observed in Figure 6 with
long runs and short runs. Short runs coincide with
indicators that were rarely sampled prior to 1990,
while variables with long runs coincide with those
sampled more regularly over the time span of the
monitoring project including SO4, Cl, TDS, DOC, T,
and NO3.

Example time series are shown for two of the
wells that sampled 14 of 15 of the indicators of
interest, see Figure 7. For the first well, the time

series are all of a short duration, since 2012. For the
second well, the time series show intervals of sig-
nificant sampling in the 1970s and 2010s. Indicators
that exhibit samples below detection tend to result
in noisy time series. Time series with this character
are similar among indicators that hover around the
detection limit, such as the majority of the PAH
indicators.

Conversely, some indicators tend to show
atypical values within certain formations (Fig. 8).
For example, TDS measures high in well A com-
pleted in the Empress formation with occasional
detection of low values. Likewise, Cl in well (B)
tends to occur at values ranging between 30 and
25 mg/L, with the occasional occurrence of a very
low value (5 mg/L). SO4 in well C tends to be more
variable over time with an apparent increasing trend
with an occasional sharp decreases. Several factors
may be responsible for these uncharacteristic values,
including: sample handling (collection, labeling,
preservation, storage, and transportation) sample
contamination during or after collection, or a typo-
graphical error. It is also possible that an extreme
event such as a lead to a sudden increase of meteoric
water in the wells, shortly before sampling. In
examples of Figure 8, the unusual values are lower

Figure 6. Runs lengths for the indicators of interest. Runs were broken if the time separating two consecutive samples was greater than 2

years.
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suggesting a possible dilution due to an influx of
fresher water at the point of sampling. The rapid
recovery thereafter is a further indication of a local

influx, possibly related to a storm event which is
subsequently flushed out of the well during subse-
quent sampling. Regardless of the cause, such values

Figure 7. Sampling over time monitoring well ‘‘East Christina 76-05-19’’ that sampled the Sand River formation in the SAOS (left) and

monitoring well ‘‘GWN-06-60’’ with two periods of sampling and a period of inactivity for the McMurray formation in the NAOS (right).
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are sporadic and can lead to additional noise, espe-
cially for shorter time series. This complication re-
quires the processing these time series with robust
methods not affected by outliers.

Sampling variance was evaluated by calculating
the temporal nugget effect that yields an estimate of
the variability in sampling that occurs over very
short time intervals. Such variations are a function of
the distribution of ions in water at any given time,
sampling practices, laboratory equipment, associ-
ated water properties, and other factors. For exam-
ple, a measurement of Na taken on a particular day
is likely to be different if taken again the very next
day, or later in the same day with a variability that is
quantified by a temporal nugget effect. Estimating
the nugget effect was done by calculating the

squared difference, x tið Þ � x tiþ1ð Þð Þ2, between all
samples, x tð Þ that are adjacent in terms of time, t,
and at the same sampling location followed by fitting
the result using linear regression. The function fits
the squared difference as a function of time, with the
y-intercept being equal to two times the nugget ef-
fect since the sum of the squared differences is
equivalent to the variogram.

To stabilize the process, the normal score
transform was applied to each indicator, and hence,
the nugget effect is representative of a standardized
value of the original units of each variable (see Ta-
ble 1). The alternative approach that would estimate
the standardized nugget effect from the original
units of each variable was not considered since it

would be sensitive to rogue values that were previ-
ously identified as well as other potential outliers.
The normal score transform suppresses the impact
that such values would have on the results, rather
than having to explicitly filter them from the data-
base.

Estimates of the nugget effect in the units of an
indicator are representative of the change that could
occur over the time span of sampling events, rather
than the change that could occur over an infinitesi-
mal change in time. To convert the nugget effect

Figure 8. TDS time series fromWell A in the Empress formation showing an atypical sample (top); Cl time series fromWell B in the

Empress formation with two atypical samples (middle), and SO4 from Well C in the Empress formation with some odd variation

between 2002 and 2003 (bottom). All wells were in the CLBR region.

Table 1. Nugget Effects of the Normal Score Variables of Interest

for all Formations Combined

Variable (Nugget effect)1/2 of normal scores Original units

PY 0.000 lg/l
NAPH 0.113 lg/l
Na 0.069 mg/l

Si 0.152 mg/l

NH3 0.128 mg/l

NO3 0.150 mg/l

T 0.251 �C
NA 0.142 mg/l

TOC 0.207 mg/l

DOC 0.198 mg/l

B 0.131 mg/l

As 0.240 mg/l

TDS 0.071 mg/l

SO4 0.104 mg/l

Cl 0.110 mg/l
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into the units of the variables prior to a normal score
transform that are listed in Table 1 requires knowl-
edge of the mean since the distributions are non-
symmetric and generally skewed resulting in a pro-
portional effect; therefore, the conversion in ex-
pected value cannot be done to be representative of
an entire formation. For the bootstrap approaches
that follow, the nugget effects were assumed to be
homoscedastic temporally and spatially allowing a
dependence on the local mean to be obtained
through random sampling and transformation with
the global distribution of each indicator, where local
refers to any time or spatial location.

Bootstrap-t for Time Anomalies

For water quality monitoring, there is an
interest in detecting if an indicator changes in time
(i.e., time anomalies). The existence of a time
anomaly of statistical significance for a variable
measured from a specific hydrostratigraphic unit
could indicate a natural change in aquifer conditions
that occurred over time due to the dissolution of
existing minerals, or other ongoing in situ chemical
processes. A time anomaly could also indicate con-
tamination by industry, including contamination
from disposal wells, or chemicals leaching from
tailings ponds, or by chemical and/or thermal energy
transfer from steam injection where cyclic steam or
steam-assisted gravity drainage has been imple-
mented during in situ mining operations. Ground-
water quality time anomalies could also be induced
if surface activities change the quantity or quality of
recharge, or if changes in groundwater flow paths
result in different degrees of mixing between
hydrostratigraphic units with contrasting water
chemistry.

Due to the limited length of time series for the
indicators of interest, the bootstrap-t technique is
determined to be a viable approach for detection of
a difference at different times (DiCiccio and Efron
1996). For two intervals of time, such as from 1958 to
1989 and from 1990 to 2015, the bootstrap-t ap-
proach is used to conduct a two tailed t-test for
different mean values in the two intervals of time.
For the sample sizes available, techniques for sta-
bilizing the confidence intervals to obtain better
behaved test statistics are utilized (Polansky 2000).
Two approaches are used for the water chemistry
database and included spatial data aggregation and
the use of the smoothed bootstrap (Silverman and

Young 1987; DiCiccio and Efron 1996). Because a
large number of wells have very limited samples,
often less than four, consecutive data from hydros-
tratigraphic units that are in proximity and that
sample the same indicator are considered simulta-
neously to increase the sample count. Similar to a
temporal nugget effect, spatial nugget effect may
cause significant changes in water quality within
short distances. Therefore, the maximum distance
considered for an observation to be included in the
series was 500 m, which is approximately half the
average well spacing for all wells in the network.

The smoothed bootstrap assumes that each
measurement follows a continuous distribution ra-
ther than a discrete fixed value. Distributions were
generated using the global distribution for each
indicator coupled with its corresponding temporal
nugget effect (Table 1). To define a distribution for a
given measurement, x, with probability, F xð Þ, the
estimated nugget effect is used to define a proba-
bility interval centered on F xð Þ from which samples
are drawn that take on values from inverting the
global cumulative distribution function (CDF).
Dissolved chloride is used as an example, for which
the global CDF in the units of Cl samples is shown in
Figure 9. The standardized nugget effect was esti-

mated as 0:112 ¼ 0:012 for this variable. For a
chloride sample that has a value of roughly 10.3 mg/
L, the cumulative probability is 0.5. The probability
interval that defines the distribution for this sample
is given by 0.5 ± 0.012/2, or 0.494 to 0.506. The
portion of the global CDF that covers this proba-
bility range is used to characterize the distribution

Figure 9. Global CDF of dissolved chloride.
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for chloride samples with a value of 10.3 mg/L,
which ranges from 10 mg/L to 10.7 mg/L. Similar
examples are shown for a 93.5 mg/L sample and a
1290.4 mg/L sample. Since the chloride distribution
is positively skewed, samples with higher values will
naturally result in wider distributions as shown.

The bootstrap-t approach is a resampling tech-
nique that estimates a statistic from a distribution by
resampling from the available data, or from a dis-
tribution characterized by the data in the smoothed
version. The t-distribution, which is usually assumed
known under the assumption of a normal distribu-
tion, is assumed unknown for the bootstrap-t ap-
proach. Rather, the bootstrap-t approach is used to
simultaneously build two distributions: one for the
statistic to be tested and another for the t-distribu-
tion to obtain estimates of confidence intervals. It is
also possible to use the percentile-bootstrap method,
whereby a confidence interval is obtained directly
from the distribution of the statistic; however, with
small sample sizes this can be problematic. It should
be considered as a viable alternative for future water
monitoring network analysis, along with other ap-
proaches, to detect time anomalies since different
methods may reveal alternate results worth explor-
ing.

The bootstrap-t approach, applied using a sig-
nificance level of 0.05, proceeds as follows for com-
paring the mean of an indicator in two intervals of
time, given that the null hypothesis is that the mean
values are the same:

1. Extract all data for the indicator of interest,
sorted by well name and time. Then, for each
well:

2. Collect the time series and combine it with
nearby wells up to a maximum distance of
500 m (other distances could be used, but it
should be kept small).

3. Bootstrap the distribution of the difference
in mean values between two time intervals
from the time series. The smoothed boot-
strap is used. The variance of the mean is
also estimated.

4. Compute the average difference, m, and the

average variance of the difference, s2.
5. Compute the t-distribution and extract 0.05

and 0.95 quantiles ( t0 and t1)
6. Specify confidence intervals as m � st1 and

m � st0.

7. Estimate the test statistic, which is the
probability that the difference in the mean
falls in the 0.05 or 0.95 tails. Values falling in
the tails indicate the null hypothesis can be
rejected for the specified significance level.

Time anomalies were identified for the indica-
tors of interest and for a minimum time series length
of five samples. Even though the smoothed approach
makes it possible to draw numerous samples from a
distribution that covers a specific sampled value, it is
not realistic to compare the mean before and after a
point in time from one or two samples in each
interval. Based on analysis of sample availability,
points in time that will maximize the occurrence of
suitable time series before and after each time are
1990, 2003, and 2008. For 1990, the interval width
was set as wide as possible to discern if there was a
difference between all samples taken prior to 1990
and all those from 1990 and afterward. For 2003, a 7-
year window was used, and for 2008 a 10-year win-
dow was used. Time windows were sufficiently long
so that short-term seasonal effects were averaged
out.

Estimating Stable Values

Establishing values at the current time provides
a baseline for comparison with samples that are
collected in the future. It also provides a spatial
dataset for mapping purposes (see Birks et al. 2019)
that can be used to guide planning of future wells for
expansion of the water monitoring network.
Stable values were derived to remove noise that was
observed in the time series and quantified via the
temporal nugget effects. Challenges for the compu-
tation include: 1—sampling was initiated after
industrial activity began; 2—some series show high
variability; 3—rogue samples that are not necessarily
outliers exist; and 4—temporal sampling is not
consistent. It is infeasible to derive a baseline value
prior to industrial activity; however, estimating a
stable value representative of a time as close as
possible to 2014 is practical.

To mitigate these challenges, the smoothed
bootstrap approach discussed previously was used to
compare means at different times and to establish
confidence intervals representative of specified time
intervals. Such values are referred to as stable mea-
sured values, since the smoothed bootstrap approach
yields the results less sensitive to noise and outliers.
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For each well and variable, the five most recently
available samples were used in the smoothed boot-
strap to calculate the stable estimates. In cases
where the five samples did not cover at least 1 year
of sampling, the set is expanded to the previous year.
The resulting stable value and confidence interval
for the Cl time series of Fig. is shown in Figure 10.
The confidence intervals show skewness that coin-
cides with the range of observations over the most
recently available samples and a spread that is con-
sistent with the observed short-term variability of
the Cl time series. Future samples that fall outside
the confidence interval could be used to flag inter-
esting cases for further assessment.

Not all wells or indicators had five samples
available, and not all variables were sampled at
equal time increments. A frequency plot of samples
per well/indicator/unit is shown in Figure 11, indi-
cating that available samples as a proportion of the

database diminishes rapidly. Roughly 40% of the
database consists of indicators with a single sample
for any given well and formation. Roughly 20% of
the database has at least five samples for a given
well, indicator, and formation.

Time increments for each indicator per well are
summarized in Figure 12. The year of leading sam-
ples for pairs and the time increment when the
trailing sample was taken are shown. There was a
significant amount of samples taken in 2005 to 2007
with time increments less than 1 month, likely from
sampling campaigns associated with EIA applica-
tions during that period. The most recent 5 years are
primarily monitoring wells where most samples are
taken between 2 and 6 months apart. Figure 12 re-
veals high variability of sampling practices. For the
most recent five samples, the average interval of
time between samples is close to 1 year, while the
median is close to half a year.

Figure 10. Stable value and confidence interval (CI) from the smoothed bootstrap for the Cl time series of Fig. 7.

Figure 11. Samples per well/variable/formation for all indicators in the water monitoring database.
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As described previously, the smooth bootstrap
approach using global distributions sampled over
intervals controlled by measurement frequency, and
the temporal nugget effect was applied to yield
stable values for each well and variable. Afterward,
spatial cell declustering (Deutsch and Journel 1998)
was applied to account for the irregular spacing of
wells for quantifying global distributions of
stable values for all variables. Resulting distributions
for the indicators of interest are shown in Figure 13.

RESULTS AND DISCUSSION

The results of the water monitoring network
analysis were compiled to categorize wells by dif-
ferent properties (type-wells) for the purpose of
identifying areas where there is already focused
monitoring and areas that may benefit from addi-
tional monitoring. To assess the quality of the sam-
pling achieved by the monitoring wells, the average
and variance of the cumulative probability of the
stable values for each indicator calculated at the
monitoring well locations was evaluated. Probabili-
ties were obtained from CDFs of indicators by for-
mation for each monitoring well. Histograms of

stable values for four formations are shown in Fig-
ure 14 for comparison. Probabilities for all moni-
toring wells that sample a given indicator in a given
formation form the distribution of probabilities that
is ideally uniform, which suggests unbiased sam-
pling. The results are meaningful for cases where
baseline wells are present along with monitoring
wells, which is all cases in this study, otherwise the
distribution of probability is guaranteed to be uni-
form and no information is gained. For a given set of
probabilities, a mean of approximately 1/2 and a
variance of approximately 1/12 indicates the moni-
toring wells are centered and well distributed since
the probabilities follow a uniform distribution. A
high mean or low mean indicates the monitoring
wells are primarily sampling the upper or lower tail
values observed compared to the global distribution
for that indicator and associated formation. When
the variance is low, the monitoring wells are sam-
pling similar values. When a high or low mean is
accompanied by a low variance, the values are
clustered in the tails. As the variance approaches 1/
4, the monitoring wells are sampling both the upper
and lower tails, since this coincides with the maxi-
mum possible variance of a random variable in the

Figure 12. 2D histogram of sample increment frequency by year for all wells and indicators.
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Figure 13. Declustered global distributions of stable values for the indicators of interest.
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[0, 1] interval that is obtained with an equal pro-
portion of zeros and ones.

The mean and variance of probabilities for each
indicator in each formation (indicator–formation
pairs) were combined into a sampling score that is
defined as the distance that the mean and variance
pair is away from perfect uniformity. The distance or
score ranges from 0 to 0.5 when the variance is
normalized to the [0,1] interval. The 90th percentile
is typically associated with a score of 0.3, so any
indicator–formation pair that has a score higher than

this has sampling bias based on the distribution of
the indicator in the formation and on the current
monitoring wells that sample that indicator in the
formation. An example of several mean versus
normalized variance pairs for the indicators is shown
in Figure 15, colored by the score variable and also
showing contours associated with the 50th, 80th, and
90th percentiles, which coincide with scores of 0.1,
0.2, and 0.3, respectively.

A low score does not necessarily denote good
sampling by the monitoring wells since the true

Figure 14. Kernel density estimates of distributions of selected indicators for the McMurray formation, Grand

Rapids formation, Empress formation, and surficial sands.
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underlying distribution is not known, especially in
cases where few baseline wells are available in a
given formation along with monitoring wells. How-
ever, a high score does indicate that the sampling is
likely biased relative to what is known about the
true distribution of each indicator from available
data. An example of a high score with bias is shown
in Figure 16 for the Grand Rapids formation and
NH3 along with a low score without bias in the same
formation for Cl.

Resulting scores for the monitoring network for
the indicators of interest and formations with mon-
itoring wells present are provided in Figs. 17 and 18.
Formations not shown were not being monitored by
the AEP well network as of 2014. Scores in the
McMurray formation are sufficiently uniform sug-
gesting that the monitoring network may be satis-
factory there; however, for the Middle Devonian
formation, there is a bias being detected for Cl, SO4,

TDS, As, B, Si, pyrene, and temperature suggesting
additional samples should be measured from other
wells in that formation. Identification of substantial
bias for> 5 indicators, as in the Muriel Lake, Grand
Rapids, Beverly Channel, and Empress formation
suggests a need to expand the network and sampling
for such formations.

Biases may identify additional information
about the monitoring wells beyond sampling cover-
age, especially if monitoring wells are clustered and
the concentration of indicators is changing over
time. This would place the samples from monitoring
wells into one of the tails of the global distribution.
Identifying indicators and formations where time
anomalies were detected are also provided in Fig-
ure 19. Across the 2008 time of interest (Fig. 14), for
the McMurray formation, sampling bias is not
identified, but 9 of the 15 indicators of interest are
showing 1 to 5 time anomalies. This suggests that the
magnitudes of the anomalies are within the bounds
of the data, thereby providing time to investigate
prior to an exceedance of the bounds of the existing
data. None of the 2008 anomalies are showing up-
ward changes where there is also a sampling bias.
There is an anomaly with a downward change for
NA in the surficial sands, so regardless of which tail
the bias is concentrating, the decrease in NA is a
positive observation, but may be associated with
changes in assay methods. For CLBR the surficial
sands, there are also increasing anomalies for Cl.
Five increasing anomalies for Cl were identified in
2008 for the McMurray formation, four for B, three
for TDS, and two for NA, while four decreasing
anomalies were found for SO4. The 2003 anomalies
(Fig. 18) also do not show any increasing anomalies
coupled with bias, while four anomalies for
increasing DOC, and three with increasing NO3 in
Ethel Lake were identified. In the McMurray for-

Figure 15. Sampling score plot for testing distributions captured

by monitoring wells. Contours are the P50 (blue), P80 (green),

and P90 (red) of the score quantity.

Figure 16. Example of a case with a high sampling score and bias (top) and a low sampling score with no

bias (bottom) between the global distribution of stable values from all available data for the Grand Rapids

formation and from the MW alone. Distributions were estimated with kernel density estimation for display

purposes.
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mation across 2003, similar to 2008, increasing
anomalies were found for Cl, TDS, B, and NA, and a
decreasing anomaly for SO4.

Anomalies for 1990 (Fig. 19) show a large
number of decreasing anomalies between measure-
ments taken prior to 1990 and after that time. This
could be due to a change in the nature of activities
occurring in the region. Prior to 1990, a lot of con-
struction activities occurred in the region, often
involving forest clearing which exposed the land
surface resulting in erosion and change in the redox
conditions in the subsurface, resulting in subsequent
mobilization of ions. After 1990, most of the con-
struction work was completed resulting a progres-
sive reversal toward initial conditions. Looking back
at the time series example in Figure 7, the points
prior to 1990 are notably higher than those after
1990. For all anomalies together, trends can be

identified such as Cl and TDS in the McMurray
Formation that show a reduction from prior to 1990
followed by increases across 2003 and again across
2008.

The results of the analysis were compiled to
group monitoring wells into various types. Well
types are patterns of results that indicate a mea-
surement of interest, or that the well is situated in a
location or formation of interest. Deriving a single
type categorization is non-trivial since the wells re-
cord many different indicators and intersect one or
more formations. The results of interest include the
following:

1. Monitoring well sampling ordination to ex-
plain where the samples from a monitoring
well are located in the global distribution for
a given indicator and associated formation.

Figure 17. Sampling scores and 2008 time anomaly occurrence for AEP�s active monitoring wells by formation and

for the indicators of interest.
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2. Monitoring well sampling entropy across
indicators and formations to isolate wells
with consistently high or low measurements,
suggesting that they are important to the
network.

3. Spatial position of monitoring wells relative
to industry activity to identify the potential
for industry driven changes.

4. Presence of recent time anomalies to identify
if an indicator is changing.

The first component, ordination, is evaluated by
computing the quantile for the stable values of each
monitoring well relative to the global distributions
within each formation and for each indicator and
subtracting 0.5 from the result, which yields a devi-
ation from the median. Deviations were also repre-
sented by zeros if the measurements were in the

lower tail and ones if the measurements were in the
upper tail, yielding a binary series. The proportion
of zeros and ones were used to compute the Shan-
non entropy, the second component, given by Eq. 1,
where p0 is the proportion of times a well samples
below the median (zeros) and p1 is the proportion of
times above the median (ones). Shannon entropy
has a maximum of approximately 0.693 when
p0 ¼ p1 ¼ 0:5. When the entropy is below 0.5, 80%
of the samples are measuring either above or below
the median, and this value is used to classify wells as
having high or low entropy.

H ¼ �p0 logðp0Þ � p1 logðp1Þ ð1Þ
For spatial positioning, the distance from a

monitoring well to an oil sand-related project
boundary was calculated. Because no information
was available about where activity was taking place

Figure 18. Sampling scores and 2003 time anomaly occurrence for AEP�s active monitoring wells by formation and

for the indicators of interest.
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within project boundaries, no assumptions related to
the proximity of a well to some feature within a
boundary were made. For example, the distance to
the centroid of a boundary has no indicated impor-
tance because the actual industry activity may not be
at such a location; therefore, any spatial trend ob-
served for an indicator inside project boundaries
may be artificial. The signed distance to a boundary
was calculated and compared with the other com-
ponents, deviation from the median (ordination),
entropy, and time anomalies across 2008 in Fig-
ure 20, where negative distance is inside a boundary
and positive is outside. There is a possible trend
among the low entropy points as distance increases,
which is likely due to regional changes in water
quality. Most of the time anomalies are in the
NAOS inside the project boundaries and may be
associated with well age; a few low entropy points

are sampling above the median inside project
boundaries. Roughly 2 km outside the project
boundaries, there is a cluster of points associated
with low entropy wells sampling the lower tails of
the global distributions that are well situated for
future monitoring.

Well types are provided on a map in Figure 21,
indicating that all anomalous wells detected for the
2008 time interval are inside, or in close proximity to
project boundaries. The cluster of low entropy wells
falling in the upper tail of the stable value distribu-
tions are clustered in the Southwest portion of the
map, with no apparent explanation for the differ-
ence apart from regional differences across a large
area. These wells are completed in the Ethel Lake,
Sand River, and Empress formations. As mentioned,
many low entropy wells fall within close proximity to
project boundaries that are consistently sampling in

Figure 19. Sampling scores and 1990 time anomaly occurrence for AEP�s active monitoring wells by formation and

for the indicators of interest.
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the lower tails of the distributions. A possible
explanation for this is that depressurization due to
ground removal from mining, dewatering, and water
usage from oil sands related activity is resulting in a
hydraulic gradient driving groundwater flow toward
the projects. Low entropy wells sampling the lower
tail of the distributions are good candidates for
continued observations because they will likely re-
veal statistically significant time anomalies in the
future should an increase in the measured indicators
occur.

A cluster of time anomalies in water quality
occurs in the central portion of the NAOS in the
McMurray formation and surficial sands. These
anomalies occur near surface mining, adjacent and
east of the Athabasca River near locations where
natural saline groundwater discharges to the
Athabasca River (Birks et al. 2018), and the
McMurray and Devonian formations have high
solute concentrations. While these changes could
be geochemical indicators of changes in the rela-
tive proportions of mixing between formations
with contrasting chemical compositions in these
areas with vertical connectivity, the cause of these
observed increases has yet to be determined. Also
note that in the CLBR, time anomalies in DOC
occur in the Ethel Lake Formation across 2003 in

an area of thermal in situ oil sands development
near the confluence of multiple channel forma-
tions. Moncur et al. (2015) found DOC concen-
tration increases upon heating of Quaternary
sediments; however, the DOC increases observed
in this dataset could be due to other natural or
anthropogenic causes and requires further investi-
gation.

Some recommendations coming out of the re-
search presented in this paper include the following.
(1) Continue to collect long-term groundwater
quality monitoring data on a regular basis, for a wide
range of chemical parameters, in the oil sands re-
gions from both government monitoring wells and
other regional data sources to extend time series and
run lengths. (2) Baseline wells, in addition to mon-
itoring wells, contribute valuable information to
understand regional groundwater quality, better
define the global distribution of indicator parame-
ters for each formation, and evaluate whether the
monitoring well network is unbiased. (3) Consider
expanding groundwater monitoring coverage in un-
der monitored formations such as Beverly Channel,
Grand Rapids, and Empress formations and in areas
near active leases. (4) Recommend confirming
temporal anomalies in water quality and investigat-
ing the cause.

Figure 20. Deviation from the median of stable values for AEP�s active monitoring wells related to distance from oil sand

project boundaries. Positive distance indicates wells outside the boundaries, while negative distance indicates wells inside

boundaries. Time anomalies shown are across 2008.
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CONCLUSIONS

Statistical analyses including smooth bootstrap,
bootstrap-t, entropy, and deviation from the median

were utilized to evaluate the groundwater quality
monitoring network implemented in the Athabasca
oil sands region of Alberta. Time series of mea-
surements were generally short with various outliers

Figure 21. Well types derived from the groundwater monitoring network analysis in the NAOS, SAOS, and

CLBR. Time anomalies shown are across 2008. Lease boundaries accessed from: http://osip.alberta.ca/libra

ry/Dataset/Details/729, March 2019 accessed from: http://osip.alberta.ca/library/Dataset/Details/729, March

2019.
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and noise requiring stochastic sampling strategies
and smoothing to yield filtered results for interpre-
tation. Causes for the particular character and
quality of the time series are likely economic and
political in nature and also due to variation in
industry monitoring involvement (e.g., EIA�s),
ownership, and management of operations. Varia-
tion led to the choice of a smoothed bootstrap ap-
proach and a bootstrap-t approach to, respectively,
derive stable values representative of the sample
sites and for detecting changes at specified points in
time. The smoothed bootstrap applied to time series
helped with smoothing noise, while the bootstrap-t
approach was useful in detecting changes in
groundwater quality over time from stable values
generated by the smoothed bootstrap. Stable values
were further used to calculate the Shannon Entropy
of time series relative to global distribution of indi-
cators by formation, the results of which were used
to isolate monitoring locations consistently display-
ing extreme values (low or high). Stable values have
applications in mapping and as a baseline for com-
paring the future monitoring results, while type-well
analysis that involved entropy and deviation from
the median has applications for selecting future
monitoring sites and identifying wells of interest.

The most recent time selected to detect if a
change was present in the time series was 2008,
which showed a cluster of temporal anomalies in the
McMurray formation and surficial sands (e.g.,
increasing Cl) within active oil sands mining leases
in the North Athabasca Oil Sands region and rela-
tively close to the Athabasca River. The results of
the analysis were combined with a measure of en-
tropy to identify wells of importance, or areas for
additional monitoring. An assessment was con-
ducted of the overall deviation of measurements
from the median, as a function of distance from
active oil sands leases, but no significant trend was
observed. Because this considered all variables
combined, high entropy of measurements relative to
the median were observed in many cases and the
probability of a consistent high measurement across
all variables was low. Nevertheless, there were
numerous cases within 2 km of lease boundaries
with low entropy that measured consistently low,
and a few cases in the Cold Lake Beaver River re-
gion with low entropy measuring consistently higher
that may be considered for further investigation. To
further assess the coverage of AEP�s active moni-
toring network, sampling scores were assigned and
summarized in figures by formation and indicator,

with the intention of highlighting formations where a
lack of data existed (sampling bias) and where
temporal anomalies have taken place. Formations
such as Beverly Channel are practically not being
monitored in AEP�s active network, while others
show sampling bias (e.g., Devonian, Grand Rapids,
Empress) suggesting a need to expand monitoring in
these formations. Others such as the McMurray
formation are being actively monitored, but are
showing numerous interesting temporal anomalies
which require additional analysis. This study
demonstrates the use of nonparametric statistical
methods to analyze large groundwater quality da-
tasets (> 5000 wells) compiled from multiple sources
beyond active governmental monitoring networks
(e.g., 161 wells) and confirms that they can inform
evaluation of status and trends in regional ground-
water quality and monitoring network expansion.
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