
DECEMBER 2006 1

Oceanic Isopycnal Slope Spectra: Part I - Internal waves

JODY M. KLYMAK

Scripps Institution of Oceanography, University of California, San Diego, La Jolla CA
JAMES N. MOUM

College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis OR

(Manuscript received December 5, 2006, in final form )

ABSTRACT

Horizontal tow measurements of internal waves are rare, and have been largely supplanted in recent
decades by vertical profile measurements. Here, estimates of isotherm displacements and turbulence
dissipation rate from a towed vehicle deployed near Hawaii are presented. The displacement data are
interpreted in terms of horizontal-wavenumber spectra of isopycnal slope. The spectra span scales
from 5 km to 0.1 m, encompassing both internal waves and turbulence. The turbulence subrange is
identified using a standard turbulence fit, and the rest of the motions are deemed to be internal waves.
The remaining subrange has a slightly red slope (φ ∼ k−1/2

x ) and vertical coherences compatible with
internal waves, in agreement with previous towed measurements. However, spectral amplitudes in the
internal wave subrange exhibit surprisingly little variation despite a four order of magnitude change in
turbulence dissipation rate observed at the site. The shape and amplitude of the horizontal spectra are
shown to be consistent with observations and models of vertical internal wave spectra that consist of two
subranges, a “linear” subrange (φ∼ k0

z ) and a red “saturated” subrange (φ∼ k−1
z ). These two subranges

are blurred in the transformation to horizontal spectra, yielding slopes close to those observed. The
saturated subrange does not admit amplitude variations in the spectra, yet is an important component of
the measured horizontal spectra, explaining the poor correspondence with the dissipation rate.

1. Introduction

At super-inertial frequencies, velocities and isopycnal
displacements in the ocean have contributions from in-
ternal waves and turbulence. These small-scale motions
are believed to be responsible, either directly or indi-
rectly, for most of the irreversible mixing of momentum
and tracers in the interior of the ocean. The mixing is
typically thought of as a cascade of energy from large-
scale internal-wave generating processes such as the wind
(i.e. Gregg et al. 1986; Hebert and Moum 1994; D’Asaro
1995; Alford and Gregg 2001), and the tides (i.e. St. Lau-
rent and Garrett 2002; Rudnick et al. 2003; Polzin 2004),
through an internal-wave continuum to turbulence. Thus
in most conceptual models, turbulence and internal waves
are directly coupled.

Wavenumber spectra are often used to statistically
characterize internal-wave and turbulent motions. Differ-
ent physics dominate at different wavenumbers so spec-
tra are divided into subranges. The most general division
is between turbulence at small scales, and non-turbulent
motions, usually internal waves, at larger scales (Fig. 1).
In this paper, we discuss gradients of vertical isopycnal
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displacement ζ; in profiles vertical gradients are referred
to as strain (ζz), while horizontal tow gradients are the
slope of isopycnals (ζx). Gradient spectra are blue at
high wavenumbers where turbulence dominates. They
are slightly red or white where internal waves dominate.

Our understanding of the internal wave field is pri-
marily empirical, with various fits to frequency and
wavenumber spectra (Cairns and Williams 1976; Munk
1981; Gregg and Kunze 1991, referred to here as
“GM81”). These fits have proven robust in the open
ocean, and are used routinely to quantify internal wave
energy and turbulence levels (Gregg 1989; Kunze and
Sanford 1996; Nagasawa et al. 2002; Garabato et al.
2004; Kunze et al. 2006). The fit wavenumber shape
is derived from vertical profiling measurements of shear
and strain (Gargett et al. 1981; Sherman and Pinkel
1991; Gregg et al. 1993; Polzin et al. 1995). Formally,
GM81 only admits one subrange, but all these stud-
ies demonstrate that vertical spectra consist of two dis-
tinct subranges. The first is white at low wavenumbers,
transitioning to a second red subrange at kz & 0.1cpm
(Fig. 1a). As energy levels increase, the transition oc-
curs at lower wavenumbers, approximately conforming
to a critical Froude number criteria. The physics of the
second subrange are poorly understood, but are believed
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to be highly non-linear (D’Asaro and Lien 2000; Hines
1991a,b). For simplicity, we refer to this as a “saturated”
subrange following the terminology used in the atmo-
spheric internal-wave literature where a similar phenom-
ena is found (Smith et al. 1987; Gardner 1996).

This paper presents horizontal spectra of isopycnal
slopes collected near the Hawaiian Ridge. The bulk of the
towed spectra cited above were published before the pres-
ence of a second saturated subrange was recognized. Like
the vertical measurements, these studies found relatively
universal spectra in the open ocean, and fit these spectra
to a single subrange. The best fit was φζx ∼ k−0.5

x with
a whitening at low wavenumbers (McKean and Ewart
1974; Katz 1975; Katz and Briscoe 1979; Dugan et al.
1986). This work led to an older version of the Garrett-
Munk fit (Garrett and Munk 1975, GM75). If we assume
one subrange our horizontal spectra are also consistent
with GM75. Below, we calculate the shape of the two-
subrange GM81 model in horizontal tows and demon-
strate that the saturated subrange strongly influences the
towed spectra.

A brief review of the expected motions (section 2) is
followed by a description of our instruments and mea-
surement site (section 3). Isopycnal-slope spectra are
presented (section 4) both in raw and dissipation-binned
form. Our interpretation of these spectra (section 5)
briefly touches on the turbulent high-wavenumber sub-
range (discussed in detail by Klymak and Moum 2006,
referred to as KMII), then focuses on the low wavenum-
bers. The low-wavenumber subrange of the observed
spectra is only weakly correlated to the turbulence dis-
sipation rate. This, and the apparent inconsistency with
strain spectra, leads us to re-examine how to model
internal-wave slope spectra (section 6). A short discus-
sion and summary follows (section 7).

2. A brief review of spectral subranges
Our spectra are formed from the horizontal gradient of

vertical isopycnal displacement (ζx). This is related to
more-often presented temperature variance spectra (φT )
by:

φζx(kx) = (2πkx)2
〈

dT
dz

〉−2

φT [cpm−1]. (1)

where dT/dz is the background vertical temperature gra-
dient, and kx is horizontal wavenumber (cpm). For verti-
cal profilers the corresponding along-measurement gradi-
ent of displacement ∂ζz is the vertical strain. In the cases
in which the measurement direction is not specified, we
generically refer to gradient spectra. Our measurements
span both turbulent and internal waves physics, so we dis-
cuss the subranges in turn.

a. Internal-wave subranges

At large scales, motions are usually dominated by in-
ternal waves. They are frequently modeled using an em-

pirical formalism that assumes the waves are separable in
vertical wavenumber (kz) and frequency (ω) (Garrett and
Munk 1972)

EIW (ω,kz) = EB(ω)A(kz). (2)

E is a dimensionless energy level parameter, B(ω) is
a “universal” fit to the frequency content of motions
between f and N, and A(kz) is a universal fit of the
wavenumber content.

This spectrum is converted to a dimensional spectrum
of isopycnal displacement (ζ) by including a frequency-
dependent function,

φζ(ω,kz) = E Z2
(ω)B(ω)A(kz), (3)

where Z2
is the variance of vertical displacements:

Z2
(ω) =

b2N0

N
ω2− f 2

ω2 , (4)

b = 1300 m is the decay scale of the stratification from
its value at 1000 m, N0 = 5.2×10−3 s−1, and f the Cori-
olis frequency (Garrett and Munk 1972); formally, these
parameters should be matched to the local environment
(Levine 2002). These spectra are red. Gradient spectra
are whitened. The strain spectrum is

φζz(ω,kz) = (2πkz)2E Z2
(ω)B(ω)A(kz), (5)

and the slope spectrum is

φζx(ω,kx) = (2πkx)2E Z2
(ω)B(ω)A(kx). (6)

The frequency content of the wavefield is modeled as

B(ω) =
2
π

f
ω

(
ω

2− f 2)−1/2
, (7)

for f < ω < N. This form ignores the presence of tidal
peaks and sub-tidal whitening often found in real obser-
vations (Levine 2002).

In wavenumbers, the single-subrange spectra are fit to
a single power law, modified by a bandwidth parameter,
k∗, so that the spectra roll-off at low wavenumbers (Munk
1981; Gregg and Kunze 1991):

A(kz) = A1(k2
z + k2

∗)
−n/2, (8)

where A1 is a constant so that
R

A(kz)dkz = 1 when inte-
grated over all wavenumbers. This form has been applied
to both vertical and horizontal measurements1 Horizontal
and vertical spectra are related through the linear disper-
sion relation:

ω
2 =

N2k2
H + f 2k2

z

k2
H + k2

z
, (9)

1A slightly different form is also used, A(kz) = A2(kz + k∗)−n. The
data discussed here cannot distinguish between forms.
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a) Strain spectra: GM81
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FIG. 1. a) GM81 strain spectra with saturated internal-wave subrange and turbulence for four different energy levels and their
corresponding turbulence levels assuming ε∼ E2. After D’Asaro and Lien (2000), except turbulence is added to the internal-wave
spectrum rather than intersect them with a sharp change of slope. b) Slope spectra in the same wave and turbulence fields as
calculated in the text (section 6). The same dashed line as (a) is shown for reference. (The slightly jagged nature of these spectra
is because we represent the vertical spectra as discrete modes rather than continuous wavenumbers.) This paper is concerned with
the low-wavenumber portion of the horizontal spectra (Part I).

where k2
H = k2

x + k2
y is the total horizontal wavenumber.

Horizontal measurements are made in a single wavenum-
ber direction, complicating comparisons between hori-
zontal and vertical spectra with an additional geometric
transformation.

A saturated subrange is found in vertical measure-
ments, with a red spectrum above a cutoff wavenumbers
kc:

A(kz) = A(kz)
kc

kz
for kz > kc. (10)

The cutoff occurs at lower wavenumbers as the internal
wave energy level increases, usually calculated from the
normalized shear spectrum

1
N2

0

Z kc

0
φUzdkz ≈ 0.7, (11)

where N0 is the background buoyancy frequency (Gregg
et al. 1993). Thus, for strain spectra, the model has a
white subrange for kz < kc, and a k−1

z slope for kz > kc
(Fig. 1a).

The effect of this second subrange on horizontal spec-
tral shapes has not been computed and compared to data
before. In the special case where there is no high-kz roll
off, and thus only one subrange, horizontal spectra have
the same slope as vertical spectra. Historically this has
been assumed, and the slope of the spectra has been deter-
mined from horizontal and vertical spectra interchange-
ably (GM75). Below, we show that this is not possible for
a two-subrange spectra, and that horizontal spectra will
have curvature and a slope in a continuum between k0

x and
k−1

x . The saturated subrange in the vertical also yields
a weak amplitude dependence of the horizontal spectra

on internal wave energy level. The calculated horizontal
spectra roughly agree with the data (McKean and Ewart
1974; Katz 1975; Katz and Briscoe 1979; Dugan et al.
1986).

b. Turbulence subrange

At smaller scales, temperature and velocity fluctua-
tions are dominated by turbulence. Microstructure gra-
dients in the ocean are modeled as isotropic, homoge-
nous, three-dimensional turbulence (Gargett 1985), al-
lowing comparison with laboratory and theoretical work
(Batchelor 1959). For this paper, the turbulent portion of
the spectrum is removed by fitting to a model

φ
Turb
ζx

= 2πχζ(CT ε
−1/3(2πkx)1/3 +qν

1/2
ε
−1/22πkx) [(cpm)−1],

(12)
where kx is the horizontal wavenumber in cycles-per-
meter, ε the turbulence dissipation rate, χζ is an ampli-
tude, CT ≈ 0.44 and q≈ 2.3 are constants, and ν the vis-
coocity of seawater. The details of this subrange are dealt
with in KMII.

Internal wave and turbulence spectral subranges over-
lap at intermediate wavenumbers with the crossover
wavenumber depending on their relative amplitudes.
KMII advocate that turbulence and internal wave spec-
tra should be added, as sketched in Fig. 1. This serves to
whiten the spectra at intermediate wavenumber ranges.

3. Instrumentation and experiment site
Our measurements were obtained with MARLIN, a

towed vehicle, detailed in Moum et al. (2002) and Kly-
mak et al. (2006) (Fig. 2). A 0.680-inch hydrographic
wire is deployed with a 1500 kg depressor weight at the
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end. MARLIN is attached to this weight via a 200-m
long cable that takes up strain in elastic cords, damp-
ing vibrations caused by strumming of the hydrographic
wire. MARLIN flies 20 m to 50 m below this weight. Tow
speeds were approximately 1 m s−1 with variations in the
speed and currents inducing small altitude variations in
MARLIN. The cable and depressor damped out ship mo-
tions shorter than 20 minutes.

FIG. 2. MARLIN deployment October 2002. The microstruc-
ture suite discussed in this paper is on the nose surrounded by
a probe guard. The fin sensor is 1.16 m below and 1.9 m aft of
the nose sensors. MARLIN is buoyed so that the tow cable, seen
hanging above the microstructure suite, leads upwards towards
the depressor weight so the sensors pass through undisturbed
water.

The data were collected in the Kauai Channel between
Oahu and Kauai as part of the Hawaiian Ocean Mixing
Experiment (Fig. 3). Sampling consisted of cross-ridge
runs made at approximately 700 m depth, and a dog-leg
pattern that approached the ridge, then turned northwest
following the 3000 m isobath. Doglegs were made at 700,
1800, 2400, and 3000 m (Klymak et al. 2006).

MARLIN was equipped with a microstructure suite that
measured small-scale velocity gradients, conductivity,
temperature, and pressure on the nose, and a temperature
sensor on a fin that protruded beneath the body (Fig. 2).
The depressor weight was equipped with a SeaBird Sea-
cat CTD (conductivity, temperature, and depth). Exam-
ple data are shown in Fig. 4. Here, MARLIN is transiting
from south of the ridge to the north, over the ridge (x=0
km, Fig. 4b)). Along its path, MARLIN measures tem-
perature (Fig. 4a), its depth (Fig. 4b), and turbulent dis-
sipation ε (Fig. 4d). We calculate isotherm displacement
(Fig. 4c) in order to diagnose the internal wavefield.

The experiment site exhibited strong variability in in-
ternal wave energy and turbulence (Fig. 4). 5-km bins of

ε decreased by two orders of magnitude 60 km away from
the ridge (Klymak et al. 2006); individual 5-km averages
varied by four orders of magnitude. There was strong
variability on smaller horizontal scales as well (Fig. 4d
represents 24-s averages) that appears to be correlated to
variability in the temperature signal (Fig. 4a).

a. Dissipation measurements

Turbulent dissipation rate, ε, was calculated from the
output of shear-foil probes by standard methods (Moum
et al. 1995). In weak turbulence, the dissipation mea-
surements are contaminated by vehicle vibration, which
was diagnosed using accelerometers in the nose of the
microstructure package (Levine and Lueck 1999); vibra-
tion signals coherent with the shear-probe signals were
removed and variance computed to get the dissipation
rate. If more than half the variance was removed, the cal-
culated dissipation rate was assumed to be dominated by
noise and set to ε = 10−11 m2 s−3. For the data discussed
here, the noise level was ε≈ 3×10−10 m2 s−3.

b. High-resolution temperature calculation

Temperature was measured using FP07 thermistors
on MARLIN’s nose. The temperature signal was sam-
pled at 39.0625 Hz and differentiated with a time con-
stant of 1.29 s; the differentiated signal was sampled at
156.25 Hz. The resolution of the temperature signal is
limited by the sensor’s time response and bit noise at
high frequencies, whereas an integral of the differenti-
ated signal drifts (slightly) at low frequencies. The two
signals were combined in the time domain following
Mudge and Lueck (1994), using a crossover frequency
of Ωc = 0.24 Hz.

c. Relating temperature to displacement

Displacement is calculated relative to a cruise-mean
temperature profile (Lee et al. 2006). We define Z0(T ) as
the inversion of the mean temperature profile T0(z). Dis-
placement is the depth offset of the isotherm from Z0(T )
(Desaubies and Gregg 1981):

ζ = z−Z0(T ). (13)

We use temperature measurements because the thermis-
tor on MARLIN was more stable than the conductivity
sensor to long-term drifts. The region was not subject
to salinity-compensating intrusions (data from R/P FLIP,
analyzed by the author, supplied by L. Rainville and R.
Pinkel), and comparisons with density estimates indicate
that there was no difficulty with this procedure.

MARLIN’s motion is discussed in detail in the ap-
pendix. At low wavenumbers (kx < 10−2 cpm), MAR-
LIN’s vertical motion has a red spectrum with a slope
much greater than that of the internal waves (approxi-
mately k−4

x ). At higher wavenumbers, the slope is less
steep, but there is much less motion. At wavenumbers
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FIG. 3. Kauai Channel study site, between Kauai and Oahu in the Hawaiian Islands. Scale bars define along- and across-ridge
axes with 5 km increments in alternating shades of gray. MARLIN tracks are shown in black.
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FIG. 5. Gradient spectra of pressure, isopycnal displacement
and temperature scaled by the background temperature gradient
computed from data obtained on a long cross-ridge tow. The
data comes from the full off-ridge tow shown in Fig. 4. The
spectrum of dζ/dx merges with the scaled temperature gradient
spectrum at kx ' 10−3 cpm.

kx > 10−3cpm, both temperature and displacement spec-
tra are more than an order of magnitude greater than this
(Fig. 5). A Monte-Carlo analysis (appendix) indicates
that vertical motions would have to be 10 times greater
than they are to affect the analyses made here.

4. Character of displacement spectra

a. Example Spectra

We present isopycnal-slope spectra computed in 5-km

bins, each representing approximately 1.4 hours of data.
Data were discarded when MARLIN had a vertical excur-
sion greater than 50 m over the 5 km. In order to make the
spectra more manageable, the time series was low-passed
and decimated at 20 Hz, or approximately 5-cm horizon-
tal scale. Spectra are presented as wavenumber spectra
because MARLIN’s speed through the water, c≈ 1 ms−1,
is faster than all but the lowest-mode internal waves. In
deep water, these fast waves have horizontal wavelengths
much larger than 5 km, so are not resolved in our spectra.

Nine example spectra from three depths and three
varying turbulence levels are shown in Fig. 6. The
shallow data (Fig. 6a–c) were all collected at depths
within 30 m of each other, so the background strati-
fications are comparable between each example. The
first two spectra, with lower dissipations, exhibit a low-
wavenumber region where spectra are slightly red, and
a high-wavenumber region where spectra are distinctly
blue. Spectra with the highest turbulence dissipation do
not have an obvious red subrange, though it is less blue
below 5×10−1 cpm. For these examples, the variance
at all wavenumbers increases with increasing turbulence.
This is a robust feature of the high-wavenumber end of
the spectra (KMII).

Spectra from depths near 1800 m (Fig. 6d–f), and near
2400 m (Fig. 6g–i) are remarkably similar in character,
with all but the most turbulent spectra displaying both
low-wavenumber red and high-wavenumber blue por-
tions. The deeper spectra have greater amplitude, in ac-
cordance with equation (4).

Binning the 5-km spectra by turbulence diffusivity
(Kρ = 0.2ε/N2) removes the stratification dependence of
ε and reveals a systematic variation to the spectra (Fig. 7).
The amplitude of the spectra are normalized by N/N0
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FIG. 4. Example data from a tow over the ridge. Data is from 18 October 2002, between 1232 and 1822 UT. MARLIN was moving
from left to right in these plots. a) Temperature signal from MARLIN and the depressor. All data are 24-s averages. b) MARLIN
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FIG. 6. Example isopycnal-slope spectra. Rows show spectra from three increasing depths. Columns represent spectra with
increasing turbulence dissipation rates. Spectra have been lightly smoothed geometrically.

(equation (4)). To leading order, this scaling collapses
the stratification dependence of the internal waves and re-
maining amplitude variation should be due to increasing
energy in the wavefield.

At low wavenumbers there is little variation in the am-
plitude of binned spectra. Internal-wave-based parame-
terizations of turbulence predict that Kρ ∼ E2 (Henyey
et al. 1986; Gregg 1989). If the low-wavenumber inter-

nal wave spectra scaled with E, the three-order of mag-
nitude change in Kρ should have corresponded to a factor
of 30 spread in low wavenumber amplitudes, not evident
in these spectra.

5. Interpretation of spectra
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FIG. 7. Average spectra, binned in one-decade bins of Kρ for shallow data and deeper data. Spectra have been normalized by their
buoyancy frequency.

a. High kx

We interpret the high wavenumber portion of the spec-
tra presented above as turbulence (KMII). To interpret the
low-wavenumber portion of the spectrum we fit a tur-
bulent model to the high wavenumbers (equation (12))
and subtract it from the spectrum, yielding a “corrected”
spectrum. Patches with nothing left in the corrected spec-
trum are not analyzed further.

The wavenumber at which the internal-wave subrange
transitions to turbulence varies in a predictable man-
ner (Fig. 9), with more energetic turbulence pushing the
crossover to lower wavenumbers. For the spectra at
700 m, the crossover is centered about kc

x = 10−9/2K−1/2
ρ ,

though with considerable variability. These crossover
wavenumbers are quite low, implying that horizontal
scales in excess of 300 m are affected by the most en-
ergetic turbulence. The low-wavenumber extent of the
turbulent signature is surprising, and discussed in detail
in KMII.

b. Low kx

Following GM and previous investigators, the low-
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FIG. 9. Value of kx at which the low wavenumber portion of the
spectra merges with the turbulence. This data is all from 700 m
depth.

wavenumber spectra are fit to a single power law

Φ = akp
x (14)

by taking the logarithm and fitting in linear space

log10(Φ) = p log10(kx)+ log10(a), (15)
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FIG. 8. Three example spectra (as in Fig. 6a–c). A turbulence spectrum (equation 2) is fit (solid curve) to the high wavenumber
range (grey). The internal-wave subrange is black.

where for the power-law parameter n in the Garrett-Munk
formalism (equation (8)), p = 2− n, so p = −0.5 for
GM75, and p = 0 for GM81.

Both the uncorrected and corrected spectra were fit
over 3.18× 10−4 < kx < 2× 10−2 cpm. For corrected
spectra, the upper limit of the fit was the crossover
wavenumber if kc

x < 2× 10−2 cpm. For the uncorrected
spectra p≈−0.32±0.3 (Fig. 10). Conditional sampling
on data from different depths does not produce signifi-
cantly different histograms or means. Corrected spectra
are slightly steeper p =−0.46±0.4. The increase in un-
certainty arises because the correction removes spectral
information. In terms of the Garrett-Munk formalism, we
would assign a power law (equation (8)) of n ≈ 2.5, in
agreement with previous horizontal fits (Katz 1975; Katz
and Briscoe 1979; Müller et al. 1978).
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FIG. 10. Slope of low wavenumber portion of spectra be-
fore (gray) and after (black) high wavenumber spectra are sub-
tracted. For the uncorrected spectra, data is fit out to kx =
10−2 cpm. For the corrected spectra it is fit as far as there is
still a corrected spectrum or to kx = 10−2 cpm, whichever is
lower.

c. Towed vertical coherence

While the average slope agrees with previous observa-
tions, agreement of spectral shape in one dimension does
not necessarily imply that internal waves are present in
the signal. A consistency check is to consider the coher-
ence between vertically separated ∆z sensors:

γ =
R R

cos(kz∆z)φ(kx,ky,kz)dky dkzR R
φ(kx,ky,kz)dky dkz

. (16)

This was evaluated numerically for a horizontally
isotropic GM75 spectrum φ(kx,ky,kz), where vertical and
horizontal components are related by the dispersion rela-
tion (Katz and Briscoe 1979).

A depressor weight towed ∆z ≈ 30 m above MARLIN
was equipped with a temperature sensor from which the
coherence-squared was computed:

γ
2 =

|φXY |2

φXX φYY
(17)

where φXY , φXX , and φYY are the co-spectrum and auto
spectrum of the isopycnal displacements at MARLIN and
the depressor. Four depth bins are presented. The data
in each depth bin is bootstrap-averaged to give an idea of
the measurement spread (Fig. 11a). The resulting coher-
ences are consistent with internal waves. Large horizon-
tal wavelengths exhibit more vertical coherence because
they are dominated by large vertical wavelength waves.
Since stratification decreases with depth, the coherence
goes up as vertical scales increase.

A similar coherence was computed between the fin
sensor ∆z = 1.16 m below the nose (Fig. 11b). These
sensors were a fixed distance apart and yielded a more
consistent estimate. The fin sensor data was only usable
at z ≈ 700 m, so we cannot see the change with differ-
ent stratifications. The coherence is in excellent agree-
ment with that expected from the GM75 model. This es-
timate was made on relatively quiescent blocks of data;
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more turbulent blocks are presented in KMII. We con-
clude from this that, at large horizontal wavelengths, we
are considering motions that have a dispersion relation
close to that of internal waves. There are other low-
aspect-ratio motions in the ocean, that could lead to simi-
lar coherences such as vortical modes (Polzin et al. 2003)
or anisotropic turbulence (Gargett 1985; Riley and de-
BruynKops 2003). However, we are not aware of models
for the towed vertical coherence of these motions.

d. Estimating turbulence from horizontal internal-wave
measurements

We now consider the amplitude of the internal wave
spectra and their relation to the turbulence dissipation
rate. In the open ocean there is strong evidence that the
dissipation is quadratically related to energy in the inter-
nal wave energy (Henyey et al. 1986; Gregg 1989; Gregg
et al. 2003):

ε = 7×10−10 N2

N2
0

E2

E2
0

[m2s−3], (18)

where E0 is the GM81 internal-wave energy level. There
is evidence from vertical profilers that this parameteriza-
tion works well at Hawaii (Lee et al. 2006).

We calculate the energy level E in equation (18), by
dividing the observed spectra by a spectrum with slope
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FIG. 12. a) Comparing the turbulence estimate based on the
amplitude of the low-wavenumber slope spectra to the shear-
probe estimate. The correlation co-efficient between these two
estimates is shown. b) 5-km averages of the dissipation esti-
mates made from fitting the high-wavenumber subrange to the
Batchelor spectra, described in KMII.

n = 2.5 and an amplitude in agreement with the GM75
spectrum:

E =
〈

φζx

A0k−0.5
x

〉
, (19)

where the average is taken over the low-wavenumber por-
tion of the spectrum. The actual value of A0 is not impor-
tant as it scales equation (18) by an arbitrary factor. The
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amplitude of the spectra does not strongly correlate to the
dissipation rate (Fig. 12a). There is a weak tendency for
higher-amplitude spectra to be associated with high dis-
sipations. However, the spread in the estimates is almost
as large as the signal, and the correlation co-efficient be-
tween the log of the quantities is not statistically different
from zero. A spatial comparison across the ridge demon-
strates that there is a tendency for the higher amplitude
spectra to be found closer to the ridge crest (Fig. 13), in
accord with our expectation that there are stronger iner-
nal wave displacements there. However, the uncertainties
in this estimate are very large.

This estimate can be contrasted to results from KMII,
in which the turbulence subrange of the spectra is fit over
0.4 < kx < 4 cpm (Fig. 12b). This more direct estimate
yields better agreement with the shear probe measure-
ments.

-40 -20 0 20
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0(
K

ρ) 
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2  s
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]

X [km]
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FIG. 13. Comparison of Kρ in the cross-ridge direction esti-
mated from the shear probes (gray shading), and from the slope
spectra (equation (18), error bars). The top of the ridge extends
from 0 km to approximately 20 km.

6. Reconciling observed horizontal spectral shapes
with observed vertical shapes

Two aspects of this analysis demonstrate clear dif-
ferences between vertical and horizontal spectra. First,
φζx ∼ k−0.5

x (Fig. 7) in accord with towed spectra that re-
sulted in GM75, but in disagreement with more-recent
vertical profiles that resulted in GM81. Second, the am-
plitude of the slope spectrum does not appear strongly
correlated to ε, whereas the amplitudes of strain spec-
tra typically are. Here, we compute slope spectra based
on the two-subrange spectral model of strain. Following
GM76, we assume that vertical and frequency spectra are
separable. However, two vertical subranges means that
the horizontal spectrum will not be separable. The hori-
zontal transform convolves the linear and saturated sub-
ranges, producing spectra with an intermediate slope and
small amplitude variations.

a. Vertical spectra with one subrange

First, for simplicity sake, we consider a vertical spec-
trum with only one subrange, but four different energy

levels. This demonstrates the effect of transforming a
vertical spectrum to horizontal wavenumbers We choose
E = (1,

√
10,10,

√
100)E0 to correspond to dissipation

rates increasing by three orders of magnitude (as plotted
in Fig. 7). Vertical spectra are specified by mode-number
j, rather than kz, following Munk (1981). The two are
related by the stratification:

j = 2bkzN0N−1. (20)

The same form for the vertical wavenumber spectrum is
used:

H( j) = A( j2 + j2
∗)
−n/2, (21)

where A is a constant so that ∑
jmax
1 H( j) = 1. Here, we

set j∗ = 0. The dispersion relation is approximated as

ω
2 =

(
Nb
π j

)2

k2
H + f 2. (22)

Here we follow GM81 and set n = 2 in equation (21), and
arbitrarily cut the spectra off at a high wavenumber, j =
2500, corresponding to a vertical scale of 1 m (Fig. 14a).

The horizontal wavenumber spectrum of φ(kH) is cal-
culated from the model spectrum φ( j,ω) using the dis-
persion relation, equation (9), and the fact that

φ(kH) =
jmax

∑
j=1

φ( j,ω)
dω

dkH
. (23)

(Munk 1981). φ( j,ω) is given by equation (5), where j is
used instead of kz, and from the dispersion relation:

dω

dkH
=

(
Nb
π j

)2 kH

ω
. (24)

This calculation was carried out for three frequency
spectra, B(ω) (Fig. 14b). First, a spectrum consisting
only of a peak at the tidal frequency M2; second, the
GM81 form (equation (7)); and third, a combination of
the two with a peak at M2, an ω−2 slope for ω > M2,
and no slope for ω < M2. This spectrum is modeled
on the frequency spectrum measured by a mooring near
the study site (Aucan et al. 2006), and has characteris-
tics similar to those noted by Levine (2002). All three
frequency spectra are normalized so thatZ N

f
B(ω)dω = 1. (25)

For the frequency spectra consisting of a spike at M2,
each value of j has a unique value of kH , and the kH spec-
trum looks just like the kz spectrum (Fig. 15a). There
is some thickness to the low-wavenumber peaks because
the frequency spectrum had some width at M2 for nu-
merical reasons. If we use a broadband frequency spec-
trum (Fig. 15c), then the discretization at low wavenum-
bers and the cut-off at high wavenumbers are blurred
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by applying the dispersion relation. Finally, the fre-
quency spectrum with both a peak and some broadband
energy produces kH spectra that exhibit both characteris-
tics (Fig. 15e).

The x-direction spectrum is calculated by noting
that kH = (k2

x + k2
y)

1/2, assuming that the wavefield is

isotropic, and integrating in the ky direction:

φ(kx) = 2
Z

∞

0

φ(kH)
2πkH

dky. (26)

(Garrett and Munk 1972). This yields the kx spectra in
Fig. 15b,d,f. They are very similar to kH spectra, except
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the features in the spectra are smoothed even more.
When H( j) follows one power law, the horizontal

spectra have the same power law except at the highest
and lowest wavenumbers. The horizontal spectra also
change their amplitude by the same proportion as the ver-
tical spectra.

b. Vertical spectra with two subranges

The same calculation carried out with a two-power-law
H( j) yields a richer result. Model spectra are shown in
Fig. 16a where, as discussed, the transition from j0 to
j−1 moves to lower mode number as the energy of the
wavefield increases. The same three frequency spectra
are used as above.

In order to compute the horizontal spectra, we assume
that the saturated internal waves j > jc are separable
and follow the same dispersion relation as linear internal
waves. These are both dubious assumptions. This sub-
range is still poorly understood (D’Asaro and Lien 2000;
Polzin et al. 2003). Lacking further information, we pro-
ceed to see where the calculation leads.

The resulting horizontal spectra of a single-frequency
wavefield look like the vertical spectra (Fig. 17a,b), with
the cutoff wavenumber predicted by the dispersion re-
lation. For a wavefield with broad frequency content
(Fig. 17c,d), the transition between subranges is spread in
horizontal wavenumber. These spectra are curved, with a
slightly red slope, but not as steep as k−1

H until the highest
wavenumbers. In this subrange, the horizontal spectra are
a combination of linear and saturated vertical subranges.

The final case uses the broadband frequency spec-
trum with an M2 peak (Fig. 17e,f). The resulting spec-
tra asymptote to φ(kx) ∼ k0

x at low wavenumbers, and
φ(kx) ∼ k−1

x at high. However, they have a broad
wavenumber range where φ(kx) ∼ k−0.5

x . In this range,
there is only weak variability of the spectral amplitude
with energy level.

This last calculation demonstrates why horizontal mea-
surements have a different internal wave spectral shape
than vertical measurements. The frequency content of the
wavefield maps jc to a spectrum of wavenumbers, kH , so
that the horizontal spectra have a slope intermediate to k0

and k−1. Calculating the spectra of kx blurs the transition
further. The calculation also demonstrates why we ob-
serve a poor correlation of spectral amplitude to ε. Hori-
zontal spectra at the wavenumbers we measure are largely
in the saturated subrange, which varies little as internal
wave energy increases. It should be possible to invert and
get a vertical spectrum, from which we can estimate the
energy level. However, this requires knowing B(ω), and
believing that the wavefield is isotropic, assumptions that
are difficult to measure from a towed instrument. Fur-
thermore, the sensitivity of such a measurement would
be much weaker than from a vertical profiler. Estimating
the dissipation rate from vertical measurements works so
well because ε is proportional to the amplitude of the low
vertical wavenumber spectrum squared. The calculations

here indicate that the sensitivity is greatly reduced in hor-
izontal measurements.

The modeled horizontal spectra all decay at low
wavenumbers. The spectra were calculated with a gravest
vertical mode of j = 1, giving a bound on how much en-
ergy can exist in the spectra at low wavenumbers. This
roll-off, and a general whitening of the spectra, occur de-
spite the fact that j∗ = 0. The whitening would still occur
if we had performed the calculation with a continuum of
vertical wavenumbers, rather than modes because of the
low-kx assymptote to the linear power law k0

x . The GM
fits to the spectra that incorporate these bandwidth pa-
rameters primarily come from horizontal measurements,
so they may be unnecessary.

This calculation makes unwarranted assumptions
about the linearity and frequency content of the saturated
subrange. If the linear dispersion relation is not a good
approximation in the saturated subrange, or the frequency
content is particularly different from the rest of the wave-
field, this calculation will need to be modified. We do
not feel the model-data agreement is adequate to advo-
cate that these assumptions are accurate. The calculation
demonstrates that, in principle, a vertical spectrum com-
posed of two subranges will have a curved power law in
the horizontal.

7. Summary and Discussion

We have presented the first co-incident measurements
of internal waves and direct turbulence from a horizon-
tal towed vehicle. Our ability to estimate the turbulence
dissipation rate and relate internal waves to turbulence in-
tensity is novel. Isopycnal-slope spectra results are sum-
marized as follows:

• low-wavenumber spectra are slightly red (φζx ∼
k−0.5

x ), in agreement with previous towed data
(Fig. 10 and GM75), but contrary to vertical
measurements which are usually white at vertical
wavenumbers less than 0.1 cpm (GM81), falling off
as k−1

z at higher wavenumbers;

• low-wavenumber motions have vertical coherences
consistent with internal waves (Fig. 11, GM75),
though perhaps consistent with other low-aspect-
ratio finescale motions.

• the influence of turbulence is greater than that of in-
ternal waves on the spectra at wavenumbers as low
as 5×10−3 cpm (Fig. 9, KMII);

• amplitudes of low wavenumber spectra are only
weakly related to the level of the turbulence
(Fig. 12).

The measurements presented here are essentially in
agreement with previous towed measurements, though
the (lack of) correlation with dissipation measurements
has not previously been demonstrated.
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The apparent discrepancy between horizontal and ver-
tical measurements is reconciled by including the sat-
urated internal-wave subrange in a model of the slope
spectrum (section 6). This calculation indicates that the
measured wavenumbers include the saturated subrange of
internal waves with a frequency-dependent contribution
for the linear subrange (Fig. 1b).

Because horizontal spectra are not separable in fre-
quency and wavelength, their interpretation is very dif-
ficult. If there were just one power law for all wavenum-
bers, as was assumed in the early towed work and the GM
formalisms, measuring vertically or horizontally would
be equivalent. However, having two power-laws in the
strain spectrum obscures the shape and energy level of the
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slope spectrum; the transform depends on the frequency
content of the waves which is usually not available from
horizontal measurements. In particular, we are not confi-
dent that horizontal tows shed much light on the saturated
subrange, though it is possible that adding more vertical
information could improve this approach.

Horizontal measurements are not the best way to es-
timate the energy of the internal wavefield. Longer tows
may resolve horizontal wavenumbers that indicate the en-
ergy level, but this involves averaging over many tens of
kilometers. At Hawaii, these scales are larger than the
scales at which turbulence decays. The inability to esti-
mate the internal-wave energy means that internal-wave-
based parameterizations cannot easily be used to estimate
the turbulence dissipation rate from horizontal measure-
ments. On the other hand, because more of the turbulence
spectrum is revealed in horizontal measurements than in
vertical, it is possible to fit a turbulence model to finescale
measurements of vertical displacements and obtain useful
dissipation estimates (KMII).
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APPENDIX A Importance of errors in the
displacement calculation

Horizontal spectra have been measured from vehicles
that do not undulate on the horizontal scales of interest
(Katz 1975; McKean and Ewart 1974). MARLIN does
move up and down raising the concern that it aliases hor-
izontal spectra by including vertical variations. Perform-
ing the spectra on displacement rather than temperature
removes some of this added variance (Fig. 4c). However,
it is not clear before-hand whether there is still significant
aliasing.

A second effect that should be considered is errors in-
duced by the finite tow speed. The horizontal spectra as-
sume that the tow is made much faster than the observed
wave speeds. This is not true for the lowest-mode waves
in the system. How that affects our results is an important
question. Monte-Carlo internal-wave simulations show
that the error is not significant for a Garrett-Munk wave
field.

If MARLIN moves with velocity (u,w), then the rate of

change of the displacement observed is

∂ζ

∂t
= u

∂ζ

∂x
+w

∂ζ

∂z
. (A1)

We can rewrite this as

∂ζ′

∂x
=

∂ζ

∂x
+

dZ
dx

∂ζ

∂z
, (A2)

where ∂ζ′/∂x = u−1∂ζ/∂t is measured as the horizontal
derivative of the displacement. dZ/dx = w/u is the hor-
izontal derivative of MARLIN’s vertical motion. In order
for MARLIN to be a good means of measuring the hori-
zontal spectrum of displacement

∂ζ

∂x
� dZ

dx
∂ζ

∂z
. (A3)

In terms of spectra, this can be written as

φ(ζx)� φ(Zx ∂ζ/∂z). (A4)

A method for calculating a GM76 wave field is pre-
sented by Sun and Kunze (1999). For the data presented
here, 100,000 waves were picked randomly from (ω, j)
that corresponds to the GM76 spectra. The horizontal di-
rection and phase of each waves were chosen randomly.
The amplitude and probability of a certain modenumber
and frequency for each wave was chosen to reproduce
the GM76 spectrum. Note, however, that we did not
implement a j−1 roll-off in the modenumber spectrum.
We assumed an instrument at the Garrett-Munk stratifica-
tion N = NGM; smaller stratifications have larger vertical
scales, so the errors considered here become smaller.

This wavefield was then sampled for a perfect in-
strument (dZ/dx = 0 and u = ∞), and for a sample
path. A comparison of the two spectra in equation (A4)
demonstrates that for the observed motion, φ(ζx) exceeds
φ(Zxζx) by almost an order of magnitude (Fig. A1a). For
a wave field with ten times the energy, the error term
is almost an order of magnitude smaller than the signal
(Fig. A1b).

This comparison is borne out by considering the ob-
served quantities themselves (Fig. A2). There is no sys-
tematic difference between the spectrum and that mea-
sured by the synthesized MARLIN. Even increasing
MARLIN’s vertical displacements by a factor of 20 only
causes a factor of two increase in the measured spectrum.
This analysis indicates that MARLIN’s motions do not
strongly alias internal-wave motions.
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