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ABSTRACT

A parameterization is presented for turbulence dissipation due to internal tides generated at

and impinging upon topography steep enough to be “supercritical” with respect to the tide.

The parameterization requires knowledge of the topography, stratification, and the remote

forcing, either barotropic or baroclinic. Internal modes that are arrested at the crest of the

topography are assumed to dissipate, and faster modes assumed to propagate away. The

energy flux into each mode is predicted using a knife-edge topography that allows linear

numerical solutions. The parameterization is tested using high-resolution two-dimensional

numerical models of barotropic and internal tides impinging on an isolated ridge, and for

the generation problem on a two-ridge system. The recipe is seen to work well compared to

numerical simulations of isolated ridges, so long as the ridge has a slope steeper than twice

the critical steepness. For less steeply sloped ridges, near-critical generation becomes more

dominant. For the two-ridge case, the recipe works well when compared to numerical model

runs with very thin ridges. However, as the ridges are widened, even by a small amount,

the recipe does poorly in an unspecified manner, because the linear response at high modes

becomes compromised as it interacts with the slopes.
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1. Introduction

The fate of tidal energy in the deep ocean is still not fully understood, despite the expec-1

tation that it is important in driving the vertical mixing of heat into the abyss, and ultimately2

driving the global overturning circulation (Munk and Wunsch 1998). Approximately 1TW3

of energy is believed to be lost from the barotropic tide in the deep ocean, compared to4

2 TW on shallow shelves. However the fate of that 1TW of energy is still unknown.5

Experiments at sites where surface tides are converted to internal tides (Polzin et al. 1997;6

Rudnick et al. 2003) indicate modest local turbulence. At topography that is predominantly7

subcritical to the internal tides, like some mid-ocean spreading centers, it is estimated that8

perhaps 30% of the energy lost from the surface tide goes into local dissipation (St. Laurent9

and Nash 2004), though more recent theoretical estimates make that fraction more variable10

depending on the local forcing (Polzin 2009) and the Coriolis frequency (Nikurashin and11

Legg 2011). These theories probably need more testing. However, the fate of the rest12

of the energy, predominantly in low modes, is not well understood. Similarly, for abrupt13

topography typical of mid-ocean ridges, like Hawaii, the fraction of energy dissipated locally14

is expected to be modest, both from available observations (Klymak et al. 2006), and from15

a theory similar to the one in this paper (Klymak et al. 2010b). Except for the strongest16

forcing or shallowest topography, the local dissipation is expected to be less than 10% of the17

energy removed from the surface tide; the rest again radiates away as low modes.18

The local fraction of dissipation, while small compared to the total barotropic energy19

converted to internal wave energy, is still spectacular. Observations near Hawaii show over-20

turns exceeding 200 m height at the ridge crest (Levine and Boyd 2006; Aucan et al. 2006;21
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Klymak et al. 2008). These near-bottom “breakers” were shown to be dominated by trapped22

lee waves that are generated near the ridge crest during each tidal cycle, and then propagate23

past the moorings as the tide changes (Legg and Klymak 2008; Klymak et al. 2010b). This24

lee-wave mechanism seems to dominate dissipation at supercritical ridges, though the obser-25

vational tests of this are still being carried out (Alford et al. 2011). This motivated us to26

create a parameterization that predicts the energy in these lee waves. In steady state, the lee27

waves size can be predicted by comparing the speed of the horizontally propagating internal28

modes to the speed of the flow at the crest of the obstacle (Klymak and Legg 2010), with the29

lee wave representing a critical mode such that cc ≈ Um, where cc is the deep-water speed of30

the critical mode, and Um is the speed of the barotropic flow at the ridge crest. Noting that31

such waves set up quickly if the topography is supercritical (Klymak et al. 2010a), we used32

the arrested wave criteria in an oscillating flow to determine the critical vertical modes at the33

obstacle crest. Dissipation in these waves was determined by considering the energy put into34

the modes higher than the critical mode (i.e. the trapped slow modes) as determined from a35

knife-edge model (St. Laurent et al. 2003; Llewellyn Smith and Young 2003). The resulting36

recipe was tested versus numerical simulations (Klymak et al. 2010b, hereafter KLP10) with37

quite good effectiveness. However, the fraction of energy dissipated locally from such ridges38

remained quite low, with much of the energy radiating away.39

Given that much of the energy escapes super-critical topography, the question arises as to40

where it goes. One possibility is scattering of the radiated low modes at remote topography.41

Here we consider the dissipation that can occur when incoming internal tides impinge on42

a steep isolated obstacle, as well as the dissipation occurring during barotropic tidal flow43

over a double ridge system. In doing so, we extend the KLP10 recipe for dissipation dur-44
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ing barotropic tidal flow over a single steep ridge to include multiple ridges and incoming45

baroclinic tides. The extended recipe is applied to several test cases, for which it is eval-46

uated by comparison with explicit numerical simulations. The incoming tide problem may47

have applications to observations south of Hawaii on the tides impacting the Line Islands48

Ridge, and similar systems. The two-ridge problem was specifically aimed at Luzon Strait49

on the east side of the South China Sea. Recent efforts have indicated that double ridge sys-50

tems may have stronger dissipation under barotropic tidal forcing than single ridges, with51

estimates ranging from 10% in a two-dimensional system (Buijsman et al. 2012) to 40%52

from a coarse three-dimensional model (Alford et al. 2011). Testing this configuration seems53

warranted, though preliminary efforts indicate that the two-dimensional assumption in the54

recipe presented here may be too simple (Buijsman et al. 2012).55

We start with a discussion of the numerical model we use to test our recipe with (sec-56

tion 2), and then describe the phenomenology we are trying to model (section 3). The57

recipe itself is described (section 4), and tested on a one-ridge topography and a two-ridge58

topography, using the two dimensional numerical model as the “truth”. For both setups,59

the recipe uses a knife-edge model to generate internal tides (described in the appendices),60

so the effect of varying width is tested (section 5) before summarizing and discussing further61

caveats (section 6).62

2. The numerical model63

As in KLP10, the proposed dissipation recipe will be tested against two dimensional64

simulation using the MITgcm (Marshall et al. 1997). This model has been used for other65
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two-dimensional wave-breaking problems (Legg and Adcroft 2003; Legg and Huijts 2006;66

Legg and Klymak 2008; Klymak et al. 2010a). Forcing was applied via velocity and density67

nudging at boundaries more than two mode-1 horizontal wavelengths from the topography.68

The model was run using the hydrostatic approximation for numerical efficiency; tests with69

the non-hydrostatic terms did not reveal substantively different responses for this particular70

scenario (Klymak and Legg 2010). The models all use Gaussian topography, defined as71

h(x) = hi exp
(
−x2

σ2

)
. For the idealized runs below, we use a constant initial stratification72

of N0 = 5.2 × 10−3 s−1 in a total water depth of H = 2000 m, and a Coriolis frequency73

of f = 10−4 s−1. As noted in KLP10, the Coriolis frequency enters into the generation-74

dissipation problem, with more energy generated and dissipated for lower f , but that the75

barotropic recipe does very well across the range of f , so we did not vary f here.76

The dissipation scheme employed in this model is described in Klymak and Legg (2010),77

and consists of applying a high vertical viscosity and diffusivity whenever there are density78

overturns due to breaking waves. The diffusivity is scaled by the size of the density overturns79

so that the energy loss ε is consistent with the Ozmidov scale Lo80

ε = L2
ON

3, (1)

where N is the stratification after overturns have been removed by density sorting. From81

this we obtain a turbulent viscosity and diffusivity of Kv = 0.2ε/N2 or Kv = 10−5 m2s−1,82

whichever is larger. The limitations of this scheme are that it does not account for shear-83

driven mixing, and it does not work well if the breaking internal waves are small compared to84

the vertical grid size. This scheme does a better job than a local Mellor-Yamada 2.0 scheme85

(Mellor and Yamada 1982), and constant viscosities (Legg and Klymak 2008) at yielding86
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energetically consistent estimates of dissipation for the parameter regimes explored here.87

3. Phenomenology88

As with barotropic generation (discussed in detail in KLP10), the dissipation of an in-89

coming tide from a Gaussian ridge is dominated by an arrested lee wave that forms during90

each phase of the tide that has strong flow (figure 1). For a given topography and stratifi-91

cation, the size of this wave and the turbulence it generates depend on the incoming tide.92

For a mode-1 internal tide this dependence is relatively straight forward (figure 1a–b), and93

similar to the barotropic case. A lee wave forms on each side of the ridge during alternating94

phases of the incoming tide, with slightly more dissipation on the side of the topography95

facing the incoming wave (figure 1b).96

For a wavefield with more than one mode, the response depends on the relative phasing97

of the modes, complicating determining the dissipation a-priori (figure 1c–h). Even for just98

a mode-1 and mode-2 incoming wave, the phasing of the modes changes the response at the99

crest of the topography, and can vary the dissipation by almost a factor of 3. Lee waves still100

form every cycle, but their size depends on whether the flow is reinforced or interfered with101

at the crest of the ridge.102

Of recent interest because of work in the South China Sea, the generation and resonance103

of a two-ridge system is also considered. The generation and dissipation problem is similarly104

complex. The dissipation can vary significantly for the same forcing depending on the105

distance the ridges are from one another (figure 2). As we show below, this has to do106

with whether the “beams” from the ridges constructively or destructively interfere with107
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one another. However, as with the other supercritical topography cases, the dissipation is108

dominated by near-crest turbulence generated in breaking trapped lee waves, so the same109

approach as for a baroclinic incoming tide is suggested below.110

4. Recipe and Tests111

The new, more general, recipe has the same ingredients as the recipe for the barotropic112

case (KLP10): a theoretical generation model gives the rate that energy is generated or113

scattered into radiated modes, Fn, and then the modes that have slower deep-water phase114

speed (cn) than a characteristic ridge-top speed (Un. i.e. cn < Un) are assumed to dissipate.115

The function Fn was calculated from a linear knife-edge model following St. Laurent et al.116

(2003).117

For a WKB-stretched ocean with depth H, constant stratification N , and a knife-edge118

ridge of height h (and ridge-top water depth H − h, see figure 3), we decompose the forcing119

and response into vertical modes that obey the eigenvalue problem120

d2φ

dz2
+
N2

c2e
φ(z) = 0 (2)

where it is found from the boundary conditions at the seafloor and surface (dφ/dz = 0) that121

ce(m) = NH/mπ, m = 1, 2..., and122

φm(z) = cos
(πmz
H

)
. (3)

Suppose we have an isolated piece of topography with a tide coming in from the positive-x123

7



direction. We assume a forcing comprised of incoming vertical modes:124

ui = R

[
M∑
m=0

ai(m)φm(z) ei(kmx+ωt)

]
, (4)

where ai(m) is the complex amplitude of each vertical mode with shape φm(z), km the125

horizontal wavenumber, and ω, the frequency of the tide. The horizontal wavenumber is126

determined by km = (ω2 − f 2)
1/2
/ce(m). The horizontal phase and group speeds are related127

to the eigenspeeds by:128

cg = ce

√
ω2 − f 2

ω
(5)

cp = ce
ω√

ω2 − f 2
. (6)

The internal response to this forcing is assumed to be comprised of a transmitted internal129

wave signal and a reflected one:130

ut = R

[
M∑
m=1

at(m)φm(z) ei(kmx+ωt)

]
(7)

ur = R

[
M∑
m=1

ar(m)φm(z) ei(kmx−ωt)

]
. (8)

If we assume a knife-edge topography and a linear response, the amplitudes at(m) and131

ar(m) can be determined by matching the velocities at the topography, so that u = 0 at132

depths deeper than the ridge crest (z < −H + h) and u and w are matched above the ridge133

crest (z > −H + h). This leads to a matrix that can be inverted for the modal amplitudes,134

at(m) and ar(m), as described in the appendix. These modal amplitudes can be expressed135

as energy fluxes by the relation:136

Fn =
H2

nπ
g(ω)

|an|2

2
(9)
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where g(ω) is137

g(ω) = ρ
[(N2 − ω2) (ω2 − f 2)]

1/2

ω
. (10)

The recipe for the turbulence requires knowing for what values of m the modes are138

arrested by ridge-top velocities, and thus are trapped and dissipate as part of the lee waves.139

For the barotropic situation in KLP10 the ridge-top speed was simply given by the barotropic140

speed at the crest of the obstacle:141

Un = UT
H

H − h
(11)

where UT is the deep-water barotropic tide, H the depth of the deep water, and h the height142

of the obstacle.143

Such a simple scaling does not work for the baroclinic case, as should be readily apparent144

from the examples given above (figure 1 and 2); the phasing of the forcing and response145

matters, and must be taken into account when determining the trapped mode that will form146

the lee wave. In order to account for the response, we propose a modified recipe as follows.147

First, presupposing that the critical mode is M , the cross-ridge velocity response at the148

top of the ridge(s) is calculated from the linear solution made up only of modes lower than149

or equal to M . i.e.150

uM(z, t) =
M∑
m=0

amφm(z)ei(kmxo−ωt) (12)

Here am is meant to represent the solution on either side of the ridge crest, so for our151

single-ridge example am = at = ai + ar.152

Second, the velocity response is averaged for half a vertical wavelength of the critical153

mode, λM = H/M over the crest of the sill, and the maximum taken over the tidal cycle:154

UM = max
(
〈uM(z, t)〉−H+h+λM

z=−H+h

)
tide

(13)
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The vertical scale to average over is chosen following Klymak et al. (2010a), where the size of155

the lee wave is shown to be on the order of half a vertical wavelength of the arrested mode.156

This half-wavelength-averaged velocity scale is re-calculated starting with the first mode and157

moving to higher modes until a mode M is found such that cM ≤ UM . This mode, M , is158

the first arrested mode, where cM = ce(M) is the eigenspeed of the M -th mode. Once we159

determine the first arrested mode, M , the dissipation is calculated as D =
∑∞

n=M Fn, where160

Fn is the rate that energy is predicted to be put into each mode.161

So to summarize, we:162

i. Determine the linear response due to the forcing represented by the modal amplitudes163

ai(n), and thus the coefficients at(n), ar(n) and the energy fluxes Fn.164

ii. Iterate through all modes M , and smooth the response at the top of the sill by H/M ,165

to determine a velocity scale at the top of the ridge UM .166

iii. The lowest mode with eigenspeed slower than the corresponding UM (i.e. cM < UM) is167

chosen as the critical mode.168

iv. The dissipation is the sum of the rate of energy input into modes M and higher:169

D =
∑∞

n=M Fn170

a. Test 1: Scattering of Mode 1 or Mode 2 from an isolated ridge171

The recipe requires the expected velocity profile at the top of the ridge. To start, we172

consider the scattering of an incoming internal tide from a single isolated ridge. The problem173

can be solved numerically using linear algebra in a manner analogous to the barotropic174
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generation problem (St. Laurent et al. 2003, KLP10) and the scattering problem from a175

continental shelf (Chapman and Hendershott 1981; Klymak et al. 2011). If an incoming tide176

is specified by modal amplitudes dm, then we can calculate the transmitted internal tide, am,177

and the reflected, bn by assuming the velocities match above the ridge and are zero below178

the ridge. Details follow the above papers and are presented briefly in the Appendix. From179

this, we can construct the velocity profile at the top of the ridge.180

We first illustrate the iterative procedure to determine the critical mode, as described181

above. An example velocity profile is considered for a ridge with h/H = 0.61, N = 5.2 ×182

10−3 s−1, and incoming mode-1 tide of amplitude d1 = 0.2 m s−1. For these runs, supercritical183

ridges were used, with σ = 10 km. For all modes (figure 4, grey lines, which are the same in184

all the panels), the velocity has a very sharp maximum at the ridge crest, and then a zero185

crossing approximately 200 m above (the high-wavenumber oscillations are due to choosing a186

finite number of modes to represent the solutions). figure 4a shows what happens if we guess187

that the critical mode is M = 4. c4 = 0.84 m s−1 (thin dashed line), and the black curve188

is the solution composed of only the first four modes. The mean of this M = 4 curve for a189

wavelength above the ridge crest is much less than c4, U4 = 0.04 m s−1 (black dashed line),190

so mode-4 is not “critical” and can propagate away from the ridge. Trying the procedure191

on higher modes shows that M = 12 is still too low, M = 20 is too high, but M = 16 is the192

first mode that is critical.193

The same procedure applies if the incoming mode-1 tide is stronger in amplitude, with194

a corresponding drop in the critical mode as amplitude increases (figure 5). Similarly, the195

response for different ridge heights changes non monotonically as the ridge and the incoming196

mode shapes interfere (figure 6). However, in general, very tall ridges do not dissipate as197
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much as shorter ridges because a large fraction of energy reflects as low mode-waves. This198

is in contrast to the situation for a barotropic flow over a ridge, where the flow is forced199

through the constriction, developing large velocities, and therefore turbulent velocities.200

The dissipation predicted by the recipe (DTh) agrees very well with a suite of two-201

dimensional numerical experiments (Dmodel, figure 7; see table 1 for parameter space) There202

does tend to be some over-estimation of the numerical model turbulence by the theory,203

though just by a small factor. The strongest dissipations are also somewhat poorly con-204

strained, likely as much due to the difficulty in estimating the internal tide amplitudes in205

a strongly non-linear environment as to a problem with the recipe1. Low dissipations pre-206

dicted by the knife-edge model start to be over-predicted significantly. This is because the207

numerical model’s vertical resolution is too low to properly resolve the turbulence in the lee208

waves as their vertical scale approaches the model resolution. In all, the recipe above could209

perhaps be tuned slightly to make the predicted dissipation smaller, but given the relative210

naiveté of the recipe, such tuning is not particularly warranted.211

b. Test 2: Barotropic generation and mode-1 scattering from an isolated ridge212

If there is a piece of topography that interacts with a remote incoming low-mode tide213

and the local barotropic tide, the combination of internal wave scattering and generation can214

have a significant impact on the internal tide response. This has been recently pointed out215

by Kelly and Nash (2010). The effect shows up profoundly for isolated topography even in216

1The model is forced by boundary nudging, and thus the response away from the boundary is hard to

specify precisely, and must be estimated from the model state, rather than be known a priori
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the simple linear model, as we discuss here. We then consider the effect on the dissipation.217

Using the linear methods described in the appendix, we can consider the case of a218

barotropic tide with an incoming tide over an isolated knife edge. This system has an219

interesting set of interactions that depend strongly on the phase between the two tides when220

they impact the topography (figure 8). In all cases, the same amount of internal energy221

transmits past the ridge. However, the fraction of that energy that is in mode-1 changes222

with the phase between the two forcing waves: at zero phase, almost all the transmitted223

energy is mode-1, while at 180 degrees out of phase, that fraction drops to almost zero. The224

difference in the reflected energy is even more pronounced, with almost no energy reflected225

in the zero-phase difference case (figure 8a), and a substantial increase for the out-of-phase226

case (figure 8e). All of the transmitted/reflected asymmetry in fluxes is in mode-1, as high227

modes must match at the ridge crest by the boundary conditions there (i.e. the length of228

the black portions of the bars in figure 8 is the same in both directions).229

The full response of this simple linear system is surprisingly complex as we can see if230

we hold the ridge height constant and vary the ratio of the baroclinic to barotropic forcing231

(v1/V0) and their phase (figure 9). The total transmitted energy flux is simply the linear232

sum of the flux created by the barotropic generation and the baroclinic flux, and does not233

change with phase between the two forcings (figure 9a). However, the modal content of the234

transmitted flux changes significantly, with less high-mode energy when v1 ≈ V0, and the235

phase difference is low (figure 9b). This difference is because the individual modal responses236

of the two forcings are slightly different, and constructively or destructively interfere. It is237

interesting that the effects balance, to produce a constant transmitted flux as a function238

of phase difference. The reflected flux is much more variable, and can be much stronger239
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(figure 9b and d) because of the strong interaction between the barotropic wave, the incoming240

mode-1 wave, and the reflected wave. It is a curious result of this system that the asymmetry241

in the strength of the internal response is all on the side of the obstacle impacted by the242

incoming internal tide.243

Just as the high-mode linear response strongly depends on the phase of the barotropic244

and baroclinic forcing, so does the dissipation predicted by the recipe (figure 10, solid line).245

When the phase differences between the barotropic and baroclinic tides are closer to 180,246

the response has more high-mode energy, and thus more dissipation. This effect is seen in247

the numerical model dissipation (figure 10, symbols), which agree very well with the recipe248

dissipations. We ran the simulations over a range of forcings and found very good agreement249

between the recipe and the simulations (figure 11).250

This mixed-forcing case, and the two that follow, indicate why the recipe needed to be251

more complicated than the barotropic-generation case discussed in KLP10. As soon as there252

are two different modes, there is no single characteristic speed at the ridge crest we can253

appeal to in order to determine criticality, because the response changes significantly with254

the phase of the forcings.255

c. Test 3: Scattering of a Mode 1 combined with a Mode 2 incoming tide from an isolated256

ridge257

The behavior can become even more complex if there is more than one internal mode258

in the incoming tide because the phasing of the information at the two tides now depends259

on depth, and thus the height of the ridge. As an example, consider the case of a mode-1260
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and mode-2 incoming tide, both tides having the same amplitude, so that the energy flux261

in mode-1 is twice that in mode-2. The results of applying the recipe are quite complex262

(figure 12), with different ridge heights having distinctly different responses. For instance,263

short ridges (h/H = 0.2) have a response that is 180 degrees out of phase with taller ridges264

because the high velocities are near the seafloor rather than near the surface (see below).265

Testing the recipe in the numerical model yields promising results (figure 13). Just266

considering the case of a ridge with h/H = 0.25, and mode-1 and mode-2 incoming tides each267

with 0.3 m s−1, we see a similar relationship between the numerically determined dissipation268

and the theory.269

The nulls and peaks as the phase of the internal tide changes can easily be understood270

from the location of strong flows in the interfering tides (figure 14). For the in-phase mode-1271

and mode-2 incoming tide, the location of the ridge is almost a null in the tidal velocity272

(figure 14a), leading to a weak response. Conversely, when mode-1 and mode-2 are exactly273

out of phase, the ridge has a strong lobe of velocity (figure 14b), so much so that a lot274

of energy is reflected upstream (figure 14d) and strong dissipation is found at the ridge275

(figure 14f).276

d. Test 4: Dissipation at a pair of ridges277

The final application is for a pair of ridges, a problem motivated by the situation in278

Luzon Strait. The two-ridge generation problem is solved with a similar linear method (see279

the Appendix), and the turbulence diagnosed at each ridge as was done above for a single280

ridge. This diagnosis is then compared to numerical model runs.281
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Before discussing the turbulence, it is worth pointing out that this simplified system has282

some complex, but classifiable behavior. The most striking effect comes if h1/H+h2/H > 1;283

then there is a resonance when the ridge separation, ∆x, approaches half a mode-1 horizontal284

wavelength ∆x/λ1 = 0.5. In this case, any characteristics emanating inward from the ridge285

crests are trapped between the ridges, leading to a standing wave pattern that self reinforces286

upon returning to the emanating ridge. The radiating flux becomes much greater than the287

radiating flux from just one ridge, and a lot of energy is trapped between the two ridges288

(figure 16), similar to so-called attractors (Echeverri et al. 2011). If the barotropic forcing289

is held constant then the internal flux will go infinite, though of course in a real system the290

finite energy in the barotropic tide tide would prevent this, even in the absence of dissipation.291

Two tall ridges also can have slightly weaker response than a single ridge if the two ridge292

tops line up in such a way that their tops are connected by a characteristic (figure 16e).293

If the ridges are short enough that (h1/H+h2/H < 1), then the perfect resonance does not294

occur. However, there is still a peak in the response where the two ridges positively reinforce295

one another by having intersecting characteristics after a bounce, either on the seafloor296

or the sea surface (figure 16c). Mathematically the seafloor bounce occurs for ∆x/λ1 =297

(h2 + h1)/2H, and the surface bounce for ∆x/λ1 = (2− h2 − h1)/2H. Again, a null occurs298

when a characteristic joins the two peaks (figure 16a, ∆x/λ1 = (h1 − h2)/2H, if h1 > h2).299

The overall complexity of the system can be judged by considering a fixed ridge height300

for one of the ridges, h1/H = 0.6, and varying the other ridge height h2/H and ridge spacing301

x/λ1 (figure 17). First, if ridge 2 is “shadowed” by ridge 1, then the response is just the same302

as a single-ridge of height h1/H, i.e. when h2 < 0.6− 2∆x/λ1. Peaks in the response occur303

when the ridge crests line up after an odd number of bounces from either the surface, the304
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seafloor, or the side of the topography (dotted lines figure 17). As noted above, resonance305

occurs at ∆x/λ1 = 0.5 for h2/H > 1−h1/H. Off this resonance, tall h2 still traps the energy306

for a number of bounces before it radiates away, so energy builds up between the ridges, and307

there is an enhancement of radiation.308

The numerical model tests of the dissipation recipe were run with two ridge heights, and309

a number of separations. For all the runs, h1/H = 0.6. For half the runs, h2/H = 0.17; this310

geometry is similar to the geometry of the Luzon Straits in WKB-stretched co-ordinates.311

Sixteen simulations were then made with the ridges separated by ∆x/λ1 = 0.1, 0.26, 0.55312

and 0.63, and barotropic forcing of U = 0.03, 0.3, 1.0 and 2.0 m s−1. As before, total depth313

was H = 2000 m, and stratification is constant at N = 5.2 × 10−3 s−1. A smaller set of314

runs was made with h1/H = 0.6 and h2/H = 0.27, and spacing ∆x/λ1 = 0.2, 0.3, 0.43, 0.8.315

These were run only at U = 0.25 m s−1. Narrow ridges were used (σ = 2 km), though the316

importance of ridge width was tested below.317

The recipe given here is to calculate the linear response, and then determine what portion318

of that response dissipates local to the topography. Of course, in so doing, the response of319

the topography itself is changed; i.e. if mode 10 is dissipated at the right-hand ridge, it320

never reaches the left hand ridge to create part of the response. This affects the high-mode321

response, and thus the amount of dissipation predicted, typically leading to an overestimate.322

To account for this, we run the linear model described above twice. The first time, we323

determine what the critical mode is at each ridge from the full solution. We then re-calculate324

the linear response, but do not allow the super-critical modes to be part of the solution at325

the other ridge. For the runs presented below, this tends to reduce the predicted dissipation326

by approximately a factor of two.327
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Again, the dissipation recipe does well in predicting the dissipation of the ridge system328

(figure 18) usually well within a factor of 2, over 3 orders of magnitude of turbulence. With329

a bit more scatter, the dissipation at the individual ridges is also relatively well predicted330

(figure 18d), with the exception of three of the left-hand ridges (squares). These three331

exceptions are from when the short ridge is sheltered from the internal tide by the taller332

ridge, so there is a lot of dissipation at the tall ridge (which is well-predicted) and relatively333

little at the short ridge. Thus the theory is working with a particularly poor guess at the334

how the wave field is modified by turbulence, and does a relatively poor job at predicting335

the dissipation at the smaller, inconsequential, ridge.336

5. Varying Width337

There are many caveats to a recipe like the one presented here, but perhaps the most338

important is the role of varying topographic slopes. As discussed in KLP10, the knife-edge339

approximation is really only very good if the width of the topography is narrow enough340

that dh/dx > 2α, where α is the slope of internal tide rays. For gentler slopes, lee waves341

are no longer the dominant dissipative mechanism, with near-critical bores becoming more342

important, until the flow becomes sub-critical, after which the dissipation drops off sharply.343

For the baroclinic incoming tide case discussed here, the same dependence on slope344

applies (figure 19). For super-critical slopes, the recipe does quite well as the lee-wave345

physics dominates the dissipation. As dh/dx is decreased below 2α (i.e. σ/σc increases,346

where σ is the ridge width, and σc the ridge width where dh/dx = α) the dissipation in the347

model increases to a peak at dh/dx ≈ α, and thus the theory (Dth) underpredicts.348
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Similar infidelity in the model can be seen for the two-ridge case (figure 20). Here,349

the mismatch surprisingly reaches a factor of two for even a moderately wide ridge, and350

oscillates much less deterministically than the one-ridge case. Similarly confusing results351

were obtained for other geometries and forcings. As discussed below, we feel this indicates352

that significant care should be taken in applying this recipe in a complicated situation like353

a two-ridge system where the response at one generation site depends strongly on the result354

at another.355

6. Summary and Discussion356

In the above we have demonstrated that turbulence dissipation at super-critical isolated357

features due to a baroclinic wavefield is concentrated at the crest of the features, and takes358

the form of lee waves as we found for barotropic generation (Legg and Klymak 2008; Klymak359

et al. 2010b). The dissipation in these lee waves can be predicted with reasonable fidelity by360

considering the linear generation from a knife-edge, and then assuming that all modes that361

move slower than an appropriately constructed ridge-crest speed are arrested, and dissipate362

locally. The ridge-crest speed in this recipe is the mean speed half a wavelength above the363

ridge crest of the mode being presumed critical, and comprising of only the faster modes.364

In order to find the critical mode, we therefore must iterate this procedure through all the365

modes, but the linear model is relatively cheap, and this is easy to do on a desktop computer.366

We tested this recipe on numerical simulations using an isolated ridge, with barotropic,367

mode-1, and mode-2 incoming waves. When these waves are combined, the dissipation368

response at the ridge changes significantly depending on the phase difference between the369
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waves, and the recipe replicates this very well (figure 13). We also tested the recipe on a370

two-ridge system with barotropic forcing, with very good results if the ridges were very thin371

in the numerical model (figure 18), again with very good predictive ability.372

The same caveats apply to this analysis as applied to the barotropic generation case. If373

the obstacles are too wide in the along-wave direction, such that the slope is not sufficiently374

supercritical (dh/dx > 2α) dissipation starts to be much larger in the simulations than375

predicted by the knife-edge theory. The problem with widening ridges is worse, and not376

fully understood, for the two-ridge case. Two ridges interact to create the internal response.377

Even mild widening of the ridges appears to change the lee wave response significantly enough378

that the recipe can be off by over a factor of two, even if the ridges are still sufficiently379

supercritical. To us, this indicates that even more substantial caution should be used when380

applying this recipe to complicated bathymetry like a two-ridge system.381

A host of other caveats should be borne in mind before applying this recipe. Topography382

with a lot of “medium-scale” roughness should be treated with caution as subsidiary lee383

waves can develop (Nash et al. 2007). Large regions of near-critical slope have a similar384

problem. The effects of three-dimensionality mean that applying this recipe to complicated385

topography will be suspect (Buijsman et al. 2012).386

Finally, it is important to determine how significant the dissipation in this problem387

actually is. To consider this, we examine the response of changing the height of the ridge388

and the incoming mode-1 tidal amplitude (figure 21). As with the barotropic case, it requires389

quite strong tides to get the fraction of energy dissipated above 10% of the incoming energy390

flux (figure 21b). Indeed, for the scattering problem, it is difficult for more than 20% of the391

energy to leave mode-1 (not shown). For tall ridges, most of the mode-1 energy reflects as392
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a mode-1 tide, whereas for short ridges, most transmits. The greatest high-mode scattering393

and dissipation occurs at h/H ≈ 1/3.394

These findings still leave open the question of what happens to most of the low-mode tidal395

energy that radiates from supercritical ridges. The supercritical scattering process does not396

seem very dissipative, nor very efficient at moving energy into higher modes. This leaves open397

the possibility that mode-1 waves move through the oceans basins relatively un-molested.398

As noted here and other efforts (Kelly and Nash 2010), remote mode-1 internal tides can399

interfere with the generation of mode-1 internal tides by the barotropic tide, leading to the400

complicated picture of an ocean full of mode-1 energy (i.e Cummins and Oey 1997; Ray401

and Cartwright 2001) that is constructively and destructively interfering with local mode-1402

generation, and having a non-trivial pathway to turbulence. Turbulence pathways are likely403

smaller-scale rough topography, near-critical slopes, and dissipation in shallow water (where404

the turbulence will not drive deep-ocean mixing). This leads to the speculation that the low-405

mode internal tide needs to be treated as a basin-scale phenomena for which the response406

needs to be calculated for the whole basin, rather than as local generation problems, in a407

manner similar to the surface tide.408
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APPENDIX409

7. More Scattering and generation problems from knife-410

edge topography411

a. Scattering and generation from a single knife-edge412

The knife edge problem of tidal generation (St. Laurent et al. 2003; Klymak et al. 2010b)413

can be readily extended to a more general case that also includes an incident wavefield414

radiating from off-ridge (figure 3). We solve the problem in a WKB stretched co-ordinate415

system, with constant stratification N , water depth H and ridge height h. A barotropic tide416

is imposed with U = Uo cosωt. The resulting baroclinic flows are decomposed into vertical417

modes:418

ui = <

{
N∑
n=1

dn cos(nπz)ei(knx+ωt)

}
(A1)

ur = <

{
N∑
n=1

bn cos(nπz)ei(−knx+ωt)

}
(A2)

ut = <

{
N∑
n=1

an cos(nπz)ei(knx+ωt)

}
(A3)

wi = <

{
N∑
n=1

dn sin(nπz)ei(knx+ωt)

}
(A4)

wr = <

{
−

N∑
n=1

bn sin(nπz)ei(−knx+ωt)

}
(A5)

wt = <

{
N∑
n=1

an sin(nπz)ei(knx+ωt)

}
(A6)
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where kn = αnπ/H are the horizontal wavenumbers, and α is the internal tide propagation419

angle:420

α =

∣∣∣∣ km
∣∣∣∣ =

(
ω2 − f 2

N2 − ω2

)1/2

. (A7)

Note that the modal amplitudes an, etc. are allowed to be complex in general. This allows421

the incoming baroclinic tide to have a different phase at the ridge than the barotropic tide,422

and for the different modes to have varying phase.423

If we define γ = (H−h)/H, and we require that the wavefields are matched at the ridge,424

x = 0 so that we find:425

ut = ui + ur − 1 ≤ z/H ≤ 0 (A8)

0 = U + ui + ur − 1 ≤ z/H ≤ −γ (A9)

wt = wi + wr − γ ≤ z ≤ 0 (A10)

The first condition says that an = bn+dn. We find the modal amplitudes by Fourier expansion426

about cosmπz/H for m = 0, 1, ..., N − 1, giving us N linear equations in N unknowns:427

(Amn +Bmn)bn + Amndn = cn (A11)

where cm is a column vector as in St. Laurent et al. (2003)428

cn =
Uo
n

sin(nπγ) (A12)

where γ = (H − h)/H, and co = −Uoπ(1− γ) for m = 0, 1, ...N − 1. The matrices A and B429

are the two components of S03’s A matrix:430

Amn =
n sinnπγ cosmπγ −m cosnπγ sinmπγ

m2 − n2
(A13)

431

Bmn =
n− n cosnπγ cosmπγ −m sinnπγ sinmπγ

m2 − n2
(A14)
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and for the singularities432

Amm =
mπ(1− γ)− sinmπγ cosmπγ

2mπ
(A15)

433

Bmm =
− sin2mπγ

2mπ
(A16)

Note that the above reduces to S03’s knife-edge when dn = 0. Equation (A11) is easily434

inverted to solve for the vector bn (so long as γ is not allowed to be too close to an integer435

division of 1, so instead of using γ = 0.5, we use γ = 0.50001, otherwise singularities result).436

b. Generation from two knife-edges437

The generation problem from two knife edges proceeds in a very similar manner. Here438

one ridge is supposed to be at x = 0 with height ho and the other at x = L, with height hL.439
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Again, we can divide the velocities into modes:440

ua = Uo

N∑
n=1

an cos(nπz)ei(knx+ωt) (A17)

ub = Uo

N∑
n=1

bn cos(nπz)ei(−knx+ωt) (A18)

uc = Uo

N∑
n=1

cn cos(nπz)ei(knx+ωt) (A19)

ud = Uo

N∑
n=1

dn cos(nπz)ei(−knx+ωt) (A20)

wa = Uo

N∑
n=1

an sin(nπz)ei(knx+ωt) (A21)

wb = −αUo
N∑
n=1

bn sin(nπz)ei(−knx+ωt) (A22)

wc = αUo

N∑
n=1

cn sin(nπz)ei(knx+ωt) (A23)

wd = −αUo
N∑
n=1

dn sin(nπz)ei(−knx+ωt) (A24)

where kn = αnπ are the horizontal wave numbers and the amplitudes are complex.441

So, the matching conditions at x = 0 are as before:442

ua = ub + uc − 1 ≤ z ≤ 0 (A25)

−1 = ub + uc − 1 ≤ z ≤ −γ0 (A26)

wa = wb + wc − γ0 ≤ z ≤ 0 (A27)

At x = L they are443

ud = ub + uc − 1 ≤ z ≤ 0 (A28)

−1 = ub + uc − 1 ≤ z ≤ −γL (A29)

wd = wb + wc − γL ≤ z ≤ 0 (A30)
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The first implies that an = bn + cn. The second implies that dne
−iknL = bne

−iknL + cne
iknL.444

We will shorten dne
−
n = bne

−
n + cne

+
n . This eliminates an and dn so we just need to solve for445

bn and cn.446

−1 =
N∑
n=1

(bn + cn)Cn z ≤ −γ0 (A31)

N∑
n=1

anSn =
N∑
n=1

(cn − bn)Sn z ≥ −γ0 (A32)

becomes447

N∑
n=1

(bn + cn)Cn = −1 z ≤ −γ0 (A33)

N∑
n=1

bnSn = 0 z ≥ −γ0 (A34)

Similarly at x = L:448

N∑
n=1

(e−n bn + e+n cn)Cn = −1 z ≤ −γL (A35)

N∑
n=1

(e+n cn)Sn = 0 z ≥ −γL (A36)

Again integrating by cos(mπz)449

(A0 +B0)b+ A0c = C0 (A37)

(AL +BL)(E+c) + AL(E−b) = CL, (A38)

where the matrices AL, A0, BL, B0 are as in the previous section with the proper choice of450

γ. CL is the same as c in the previous section, evaluated for γ = γL, and C0 is for γo. The451

notation E+, E− are diagonal matrices that represent the phase shift between x = L and452
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x = 0:453

E+
mn = δ(m− n)exp(iknL) (A39)

E−mn = δ(m− n)exp(−iknL) (A40)

(A41)

Solving, we get454

b = D−10 (C0 − A0c) (A42)

(DLE
+ − ALE−D−1o A0)c = CL − ALE−D−1o C0 (A43)

where the last equation is invertible to get cn.455
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List of Tables528

1 Parameter matrix for numerical runs used in Case 1, monochromatic tide529

scattering from an isolated ridge. There were 24 runs in total, as summarized530

in figure 7. For all runs, N = 5.2 × 10−3 s−1 and f = 5.23 × 10−5 s−1, and531

H = 2000m. 33532

2 Parameter matrix for numerical runs used in Case 2, barotropic tide (v0)533

and incoming baroclinic tide (v1) combined. There were 32 runs in total,534

as summarized in figure 11. For all runs, N = 5.2 × 10−3 s−1 and f =535

5.23 × 10−5 s−1, H = 2000m, and h/H = 0.6. Each forcing was run with536

phase differences at the topography of 0, 45, 90, and 135 degrees. 34537

3 Parameter matrix for numerical runs used in Case 3, mode-1 and mode-2538

tides combined scattering from an isolated ridge. There were 24 runs in total,539

as summarized in figure 15. For all runs, N = 5.2 × 10−3 s−1 and f =540

5.23× 10−5 s−1, and H = 2000m. 35541

4 Parameter matrix for numerical runs used in Case 4, barotropic tides gener-542

ated at two ridges. There were 25 runs in total, as summarized in figure 15.543

For all runs, N = 5.2 × 10−3 s−1 and f = 1.0 × 10−4 s−1, and H = 2000m.544

The left ridge has hl = 0.17, and the right hr = 0.6. The separation between545

the left and right ridges is scaled by the mode-1 wavelength: λ1 = 210 km. 36546
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Table 1. Parameter matrix for numerical runs used in Case 1, monochromatic tide scat-
tering from an isolated ridge. There were 24 runs in total, as summarized in fig. 7. For all
runs, N = 5.2× 10−3 s−1 and f = 5.23× 10−5 s−1, and H = 2000m.

parameter values
modes 1 and 2
h/H 0.75, 0.55, 0.25
ui(m)[ms−1] 0.10, 0.25, 0.55, 1.00
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Table 2. Parameter matrix for numerical runs used in Case 2, barotropic tide (v0) and
incoming baroclinic tide (v1) combined. There were 32 runs in total, as summarized in
fig. 11. For all runs, N = 5.2 × 10−3 s−1 and f = 5.23 × 10−5 s−1, H = 2000m, and
h/H = 0.6. Each forcing was run with phase differences at the topography of 0, 45, 90, and
135 degrees.

v0[m s−1] v1[m s−1]
0.025 0.15, 0.25
0.10 0.02, 0.05, 0.10, 0.25
0.20 0.15, 0.55
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Table 3. Parameter matrix for numerical runs used in Case 3, mode-1 and mode-2 tides
combined scattering from an isolated ridge. There were 24 runs in total, as summarized in
fig. 15. For all runs, N = 5.2× 10−3 s−1 and f = 5.23× 10−5 s−1, and H = 2000m.

parameter values
modes 1 and 2
h/H 0.75, 0.55, 0.25
ui(m)[ms−1] 0.10, 0.25, 0.55, 1.00
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Table 4. Parameter matrix for numerical runs used in Case 4, barotropic tides generated
at two ridges. There were 25 runs in total, as summarized in fig. 15. For all runs, N =
5.2 × 10−3 s−1 and f = 1.0 × 10−4 s−1, and H = 2000m. The left ridge has hl = 0.17, and
the right hr = 0.6. The separation between the left and right ridges is scaled by the mode-1
wavelength: λ1 = 210 km.

separation (∆x/λ1) V0[ms−1]
0.10 0.03, 0.30, 1.00, 2.00
0.22 0.03, 1.00
0.26 0.03, 0.30, 1.00, 2.00
0.30 0.03, 1.00
0.35 0.03, 1.00
0.38 0.03, 1.00
0.55 0.03, 0.30, 1.00, 2.00
0.63 0.03, 0.30, 1.00, 2.00
0.65 0.03
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List of Figures547

1 Numerical model runs demonstrating the response of a Gaussian ridge to548

incoming internal tides. These runs all have a constant stratification N =549

5.2 × 10−3 s−1. a) velocity snapshot of a 0.55 m s−1 mode-1 incoming tide,550

impinging from the right. Contours are density. b) dissipation for the mode-1551

tide, averaged for a tidal cycle. c–d) for a mode-1 and mode-2 tide with the552

same amplitudes and the same velocity phase at the sea surface above the553

topography. e–f) for a mode-1 and mode-2 tide with the same amplitudes,554

but 45 degree phase shift at the ridge. g–h) 90 degree phase shift at the ridge. 43555

2 Turbulence dissipation for the tidal generation problem of two ridges that are556

0.6 and 0.17 of the water depth. For the upper panel, the tidal characteristics557

from the two ridges reinforce one another. For the lower, the up going ray558

from the small ridge works against the down going ray from the large ridge,559

reducing the response. An analytic model described in this paper captures560

this weak resonance. 44561

3 Setup of the general one-ridge linear problem, including a barotropic tide, and562

an incoming internal wave from the right hand side. 45563
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4 Example iterations on choosing a critical mode using the generated response564

and the incoming forcing as input parameters. The response is for a mode-1565

incoming wave. In all 4 panels, the thin line is the full modeled response.566

The black line is the smoothed velocity removing the modes higher than the567

mode being tested, and the black dashed line the mean speed over the half568

wavelength of the mode being tested; note that this scale gets smaller as the569

mode gets higher, corresponding to the expected lee wave getting smaller.570

The grey dashed line is the lateral phase speed of the mode being tested. 46571

5 Values of UM for 4 values of the incoming mode-1 amplitude impacting a ridge572

with h/H = 0.61 (N = 5.2 × 10−3 s−1, H = 2000 m). The thin lines are the573

speed at the top of the ridge assuming that the indicated mode is the critical574

one, as described in the text. This speed increases as mode number increases575

because the smoothing of the ridge-top velocity is less, so more of the near-576

ridge peak is part of the estimate (see figure 4). The speed of the each internal577

mode is indicated by the grey curve. Where the thin lines intersect the grey578

curve indicates the critical mode. 47579

6 a) Critical mode number for an incoming mode-1 tide of increasing amplitudes580

impacting on four different ridge heights. b) fraction of incoming mode-1581

energy that is dissipated for different ridge heights as a function of forcing582

strength. 48583
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7 Dissipation due to mode-1 (open symbols) or mode-2 (black) incoming internal584

tides impacting a thin Gaussian ridge in a numerical model (Dmodel) and due585

to the recipe presented here (DTh). Different ridge heights are indicated by586

the shape of the symbols, and a number of different internal tide amplitudes587

were used. 49588

8 Velocity snapshots for a barotropic tide of amplitude 0.1 m s−1 interacting with589

a mode-1 tide of amplitude 0.1 m s−1, with five different phase differences be-590

tween the two tides. Here h/H = 0.6, and the stratification is constant. The591

energy flux is indicated in each panel as the black and red bars, with red indi-592

cating mode-1 energy, and black indicating all the energy. The incoming flux593

is plotted atop the ridge, and the reflected to the right, and the transmitted594

to the left. For each case, the incoming internal energy is the same, but the595

transmitted and reflected vary substantially. 50596

9 Energy flux partition for mode-1 tide with amplitude v1, and a barotropic tide597

with amplitude v0 for different phase differences over a ridge with h/H = 0.6.598

a) Transmitted flux normalized by the barotropic-only flux. b) Reflected flux599

normalized by the barotropic-only right-going flux. c) Fraction of transmitted600

flux in high modes (n > 1). d) Fraction of reflected flux in high modes. 51601

10 Comparison of theoretical dissipation (solid line), and dissipation observed602

in model (symbols), for a ridge with h/H = 0.6, v0 = 0.1 m s−1, and v1 =603

0.11 m s−1. 52604
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11 Comparison of the recipe dissipations Dth and the numerical model dissipa-605

tions Dmodel. Runs here were made with h/H = 0.6, and eight combinations606

of v0, v1, as described in table 2. 53607

12 Dissipation predicted from the recipe for an internal tide consisting of both608

mode-1 and mode-2 waves with equal amplitudes impacting a ridge, presented609

as a function of the phase between the mode-1 and mode-2 tides when they610

arrive at the ridge crest. The four curves represent four different ridges heights. 54611

13 Comparison of recipe dissipation and numerical model dissipation for a mode-1612

and mode-2 incoming internal tide impinging on a knife edge with h/H = 0.25,613

and both mode-1 and mode-2 having amplitudes of 0.55 m s−1, but being614

forced at varying phases. 55615

14 a) and b) Velocity snapshots of the specified forcing from an incoming mode-616

1 and mode-2 tides (reflection and actual transmission not shown). c) and617

d) the response from the numerical model, and e) and f) the tidal-averaged618

dissipation at the ridge. Note the higher dissipation when the sum of the619

energy impacts the ridge crest. 56620

15 Comparison of knife edge tidally-averaged dissipation (Dth), and numerical621

model dissipation (Dmodel) for a number of runs with mode-1 and mode-2622

combined incoming fluxes at varying phase differences between the incoming623

waves. 57624
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16 a)–d) Velocity snapshots of the linear response of a two-ridge forcing if the625

two ridges are such that h1 + h2 < H, or e)–h) h1 + h2 > H (lower row). The626

velocity is scaled by the barotropic velocity amplitude. The number in the left627

hand corner of each panel is the energy flux to the left, scaled by the energy628

flux that the same barotropic forcing would give if the topography was only629

comprised of the right-hand ridge. The number on the right is scaled energy630

flux to the right. The case with h1 + h2 > H has a resonance when the ridges631

are half a mode-1 wavelength apart. 58632

17 Response of a two-ridge system with the right-side ridge held at a constant633

height h1 = 0.6H, and the left hand ridge height varied, and the spacing634

between the ridges varied as ∆x/λ1, where λ1 is the mode-1 horizontal wave-635

length. a) Is energy flux to the left, b) is the energy density between the636

ridges, and c) the energy flux to the right. 59637

18 Model versus “theory” tests for the two-ridge system. This was for two ridges,638

one with hl/H = 0.17, and the other with hr/H = 0.60. The strength of the639

forcing was varied, as was the distance between the ridges. a-b) the total640

dissipation of the system; c-d) the dissipation at the individual ridges. 60641

19 Effect of widening the ridge on the dissipation predicted from a mode-1 in-642

coming tide impinging on ridge with h/H = 0.6, and the tidal amplitude of643

0.25 m s−1. The critical width is given by the slope of the internal tidal rays;644

as the topography gets shallower than 0.5wc the model response increases645

significantly, and the theory under-predicts the numerical results. 61646
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20 Two-ridge case, h1/H = 0.17, and h2/H = 0.6, separated by ∆x/λ1 = 0.3.647

The critical width is compared to the height of the large ridge. 62648

21 Transmission, dissipation and reflection for a mode-1 wave impacting an iso-649

lated ridge, as predicted by the recipe in this paper. The amplitude of the650

mode-1 wave uo is normalized by the mode-1 wave speed, c1 = 3.3 m s−1. 63651

22 Setup of the general two-ridge problem, including a barotropic tide, and an652

incoming internal wave from the right hand side. 64653
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Fig. 1. Numerical model runs demonstrating the response of a Gaussian ridge to incoming
internal tides. These runs all have a constant stratification N = 5.2× 10−3 s−1. a) velocity
snapshot of a 0.55 m s−1 mode-1 incoming tide, impinging from the right. Contours are
density. b) dissipation for the mode-1 tide, averaged for a tidal cycle. c–d) for a mode-1
and mode-2 tide with the same amplitudes and the same velocity phase at the sea surface
above the topography. e–f) for a mode-1 and mode-2 tide with the same amplitudes, but 45
degree phase shift at the ridge. g–h) 90 degree phase shift at the ridge.
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Fig. 2. Turbulence dissipation for the tidal generation problem of two ridges that are 0.6
and 0.17 of the water depth. For the upper panel, the tidal characteristics from the two
ridges reinforce one another. For the lower, the up going ray from the small ridge works
against the down going ray from the large ridge, reducing the response. An analytic model
described in this paper captures this weak resonance.
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Fig. 3. Setup of the general one-ridge linear problem, including a barotropic tide, and an
incoming internal wave from the right hand side.

45



−1 −0.5 0 0.5 1

300

400

500

600

700

800

900

1000

 c
4

cutoff mode number: 4

D
E

P
T

H
 [m

]

−1 −0.5 0 0.5 1

300

400

500

600

700

800

900

1000

 c
12

cutoff mode number: 12

−1 −0.5 0 0.5 1

300

400

500

600

700

800

900

1000

 c
16

cutoff mode number: 16

−1 −0.5 0 0.5 1

300

400

500

600

700

800

900

1000

 c
20

cutoff mode number: 20

u [m/s]

Fig. 4. Example iterations on choosing a critical mode using the generated response and the
incoming forcing as input parameters. The response is for a mode-1 incoming wave. In all
4 panels, the thin line is the full modeled response. The black line is the smoothed velocity
removing the modes higher than the mode being tested, and the black dashed line the mean
speed over the half wavelength of the mode being tested; note that this scale gets smaller
as the mode gets higher, corresponding to the expected lee wave getting smaller. The grey
dashed line is the lateral phase speed of the mode being tested.
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Fig. 5. Values of UM for 4 values of the incoming mode-1 amplitude impacting a ridge with
h/H = 0.61 (N = 5.2× 10−3 s−1, H = 2000 m). The thin lines are the speed at the top of
the ridge assuming that the indicated mode is the critical one, as described in the text. This
speed increases as mode number increases because the smoothing of the ridge-top velocity
is less, so more of the near-ridge peak is part of the estimate (see fig. 4). The speed of the
each internal mode is indicated by the grey curve. Where the thin lines intersect the grey
curve indicates the critical mode.
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Fig. 6. a) Critical mode number for an incoming mode-1 tide of increasing amplitudes
impacting on four different ridge heights. b) fraction of incoming mode-1 energy that is
dissipated for different ridge heights as a function of forcing strength.
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Fig. 7. Dissipation due to mode-1 (open symbols) or mode-2 (black) incoming internal
tides impacting a thin Gaussian ridge in a numerical model (Dmodel) and due to the recipe
presented here (DTh). Different ridge heights are indicated by the shape of the symbols, and
a number of different internal tide amplitudes were used.
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Fig. 8. Velocity snapshots for a barotropic tide of amplitude 0.1 m s−1 interacting with a
mode-1 tide of amplitude 0.1 m s−1, with five different phase differences between the two
tides. Here h/H = 0.6, and the stratification is constant. The energy flux is indicated in
each panel as the black and red bars, with red indicating mode-1 energy, and black indicating
all the energy. The incoming flux is plotted atop the ridge, and the reflected to the right,
and the transmitted to the left. For each case, the incoming internal energy is the same, but
the transmitted and reflected vary substantially.
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Fig. 9. Energy flux partition for mode-1 tide with amplitude v1, and a barotropic tide with
amplitude v0 for different phase differences over a ridge with h/H = 0.6. a) Transmitted flux
normalized by the barotropic-only flux. b) Reflected flux normalized by the barotropic-only
right-going flux. c) Fraction of transmitted flux in high modes (n > 1). d) Fraction of
reflected flux in high modes.
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Fig. 10. Comparison of theoretical dissipation (solid line), and dissipation observed in model
(symbols), for a ridge with h/H = 0.6, v0 = 0.1 m s−1, and v1 = 0.11 m s−1.
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Fig. 11. Comparison of the recipe dissipations Dth and the numerical model dissipations
Dmodel. Runs here were made with h/H = 0.6, and eight combinations of v0, v1, as described
in table 2.
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Fig. 12. Dissipation predicted from the recipe for an internal tide consisting of both mode-1
and mode-2 waves with equal amplitudes impacting a ridge, presented as a function of the
phase between the mode-1 and mode-2 tides when they arrive at the ridge crest. The four
curves represent four different ridges heights.
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Fig. 13. Comparison of recipe dissipation and numerical model dissipation for a mode-1
and mode-2 incoming internal tide impinging on a knife edge with h/H = 0.25, and both
mode-1 and mode-2 having amplitudes of 0.55 m s−1, but being forced at varying phases.
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Fig. 14. a) and b) Velocity snapshots of the specified forcing from an incoming mode-1 and
mode-2 tides (reflection and actual transmission not shown). c) and d) the response from
the numerical model, and e) and f) the tidal-averaged dissipation at the ridge. Note the
higher dissipation when the sum of the energy impacts the ridge crest.
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Fig. 15. Comparison of knife edge tidally-averaged dissipation (Dth), and numerical model
dissipation (Dmodel) for a number of runs with mode-1 and mode-2 combined incoming fluxes
at varying phase differences between the incoming waves.
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Fig. 16. a)–d) Velocity snapshots of the linear response of a two-ridge forcing if the two
ridges are such that h1 + h2 < H, or e)–h) h1 + h2 > H (lower row). The velocity is scaled
by the barotropic velocity amplitude. The number in the left hand corner of each panel is
the energy flux to the left, scaled by the energy flux that the same barotropic forcing would
give if the topography was only comprised of the right-hand ridge. The number on the right
is scaled energy flux to the right. The case with h1 + h2 > H has a resonance when the
ridges are half a mode-1 wavelength apart.

58



Fig. 17. Response of a two-ridge system with the right-side ridge held at a constant height
h1 = 0.6H, and the left hand ridge height varied, and the spacing between the ridges varied
as ∆x/λ1, where λ1 is the mode-1 horizontal wavelength. a) Is energy flux to the left, b) is
the energy density between the ridges, and c) the energy flux to the right.
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Fig. 18. Model versus “theory” tests for the two-ridge system. This was for two ridges, one
with hl/H = 0.17, and the other with hr/H = 0.60. The strength of the forcing was varied,
as was the distance between the ridges. a-b) the total dissipation of the system; c-d) the
dissipation at the individual ridges.
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Fig. 19. Effect of widening the ridge on the dissipation predicted from a mode-1 incoming
tide impinging on ridge with h/H = 0.6, and the tidal amplitude of 0.25 m s−1. The critical
width is given by the slope of the internal tidal rays; as the topography gets shallower than
0.5wc the model response increases significantly, and the theory under-predicts the numerical
results.
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Fig. 20. Two-ridge case, h1/H = 0.17, and h2/H = 0.6, separated by ∆x/λ1 = 0.3. The
critical width is compared to the height of the large ridge.
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Fig. 21. Transmission, dissipation and reflection for a mode-1 wave impacting an isolated
ridge, as predicted by the recipe in this paper. The amplitude of the mode-1 wave uo is
normalized by the mode-1 wave speed, c1 = 3.3 m s−1.
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Fig. 22. Setup of the general two-ridge problem, including a barotropic tide, and an incoming
internal wave from the right hand side.
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