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Abstract
Breaking internal waves in the vicinity of topography can reach heights of over 100 m
and are thought to enhance basin-wide energy dissipation and mixing in the ocean. The
scales at which these waves are modelled often include the breaking of large waves (10s
of meters), but not the turbulence dissipation scales (centimeters). Previous approaches
to parameterize the turbulence have been to use a universally large viscosity, or to use
mixing schemes that rely on Richardson-number criteria.

A simple alternative is presented that enhances mixing and viscosity in the pres-
ence of breaking waves by assuming that dissipation is governed by the equivalence of
the density overturning scales to the Ozmidov scale (ε = L2

T N3, where LT is the size
of the density overturns, and N the stratification). Eddy diffusivities and viscosities are
related to the dissipation by the Osborn relation (Kz = ΓεN−2) to yield a simple param-
eterization Kz = ΓL2

T N, where Γ ≈ 0.2 is the flux coefficient. This method is compared
to previous schemes for flow over topography to show that, when eddy diffusivity and
viscosity are assumed to be proportional, it dissipates the correct amount of energy, and
that the dissipation reported by the mixing scheme is consistent with energy losses in
the model. A significant advantage of this scheme is that it has no tunable parameters,
apart from the turbulent Prandtl number and flux coefficient. A disadvantage is that the
overturning scales of the turbulence must be relatively well-resolved.

1. Introduction

There is considerable interest in how topography interacts with stratified flows to
produce internal waves and turbulence. In particular the role of internal waves pro-
duced by tides and lee waves in flows over topography have been examined. In general
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these have been treated with large-scale general circulation models (i.e. POM Merri-
field and Holloway (2002) or ROMS), or with specialized non-hydrostatic codes (MIT-
gcm Legg and Adcroft (2003), SUNTANS Venayagamoorthy and Fringer (2005)). At
the other end of the spectrum LES or DNS simulations have been carried out on small
scales that resolve turbulence.

Here we are interested in the scales typical of flow over deep ocean ridges, like
Hawaii (Klymak et al., 2008), and at continental slopes, like Oregon (Nash et al.,
2007). These flows are deep, up to 4000 m, and exhibit features on a variety of
scales, from low-mode internal tides that span the whole water column, to break-
ing non-linear waves near abrupt changes in the topographic slopes. These breaking
waves lead to density inversions that can be over 150-m tall, with dissipation rates ε >
5×10−8 m2 s−3 in stratifications N2 ≈ 10−6 s−2. These flows have turbulent Reynolds
numbers exceeding 106, and buoyancy Reynolds numbers Reb = ε/νN2 > 104, and
Kolmogorov scales on the order of 10−3 m. To capture the full range of scales would
require 106 grid cells in each dimension. Instead, to study these phenomena, we have
made extensive use of a relatively efficient class of 2-D simulations that allow good
resolution in the vertical (O(10m)) and horizontal (O(100 m)), such that the large-scale
forcing and subsequent breaking of internal waves can be simulated. Direct numer-
ical simulation methods are prohibitively expensive for exploration of the parameter
spaces in which these phenomena are forced, therefore the turbulence dissipation in
these simulations needs to be parameterized.

Two approaches to parameterizing turbulence at this scale of modelling have been
used. The first is to use a high vertical viscosity Az ∼ 10−2 m2s−1 (Legg and Klymak,
2008) or Az ∼ 10−1 m2s−1 (Legg and Huijts, 2006; Legg and Adcroft, 2003). This has
the benefit of being simple, and yielding the turbulence dissipation in the flow

ε = Az

(
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∂z

)2
+Ah

(
∂u
∂x

)2
+Ah

(
∂u
∂y

)2
. (1)

As we argue below, this scheme depends strongly on the choice of Az. Even if it is
tuned to the breaking waves, it can exaggerate dissipation in the midfield where the
shear is strong but not strong enough to excite shear instability or breaking.

The alternative has been schemes that have enhanced mixing based on the value of
the gradient Richardson number Ri = (∂Uh/∂z)−2N2 (where Uh is the horizontal com-
ponent of velocity, and N the buoyancy frequency). Some schemes depend on a crit-
ical Richardson number below which the turbulence is increased, such as the Mellor-
Yamada scheme used here (Mellor and Yamada, 1982), while more recent schemes
remove the necessity for a critical Richardson number (Galperin et al., 2007; Canuto
et al., 2008). In all such schemes the production rate of turbulence kinetic energy
is assumed to be P = Az(∂Uh/∂z)2 where Az is a turbulent vertical diffusivity meant
to represent unresolved eddies. The problem with these schemes in simulations with
resolved breaking waves is that the turbulent eddies are partially resolved and drive
overturning so that Ri−1 < 0 is resolved by the model. All the schemes introduce an
arbitrarily large viscosity for negative Richardson number and ε calculated from the
local shear can be unreasonably high or low, depending on this arbitrary choice.

Here we present a simple local scheme for mixing in breaking regions based on
the observed correlation between the size of the convecting overturn and the Ozmidov
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scale. The Ozmidov scale is related to the rate of turbulence dissipation by ε = L2
oN−3.

Energy arguments and observational evidence indicates that the size of convectively
unstable vertical displacements in a turbulent patch LT , is approximately equivalent to
the Ozmidov scale: Lt ≈ Lo (Dillon, 1982; Wesson and Gregg, 1994; Moum, 1996).
This brushes over significant changes in the dissipation during the life of an overturn
(i.e. Gargett and Moum, 1995; Smyth et al., 2001), but is a rough average dissipation
rate. The correspondence between dissipation rates and the size of overturns in convec-
tive instabilities like those found over Hawaii or in fjords appears to be robust (Klymak
and Gregg, 2004; Klymak et al., 2008). We present this scheme as a bridge between
large scale models that do not resolve breaking waves, and small-scale large-eddy or
direct numerical simulations.

Below we implement this simple scheme whereby the turbulent viscosity Az is cal-
culated from the size of overturns driven by the breaking waves. We compare the en-
ergy dissipation predicted by the parameterized Az to the energy lost from the model for
the proposed scheme and compare to the constant-Az runs and those using the Mellor-
Yamada parameterization, a widely used Richardson-number scheme. Two idealized
cases of interest are considered, steady and oscillating tidal flow over an obstacle.

2. Methods

The model used here is the MITgcm (Marshall et al., 1997; Legg and Klymak,
2008). We use a 2-dimensional topography, with a stretched horizontal co-ordinate
system. For most of the runs here water depth H = 2000 m, and vertical resolution
was 200 points with δzm = 10 m; a few runs were made with H = 1300 and 1650 m.
The horizontal domain was 174 km over 240 grid cells. The inner 80 grid cells were
spaced 100 m apart, and then the grid was telescoped linearly so that for the outer cells
∆x = 2 km. The obstacle in all cases is a Gaussian shape, height from the seafloor
given by h = hmexp(−x2/W 2). The width W introduces an aspect ratio to the problem
αo = hm/W . The model was run in hydrostatic mode for numerical efficiency. Exper-
iments with non-hydrostatic code did not reveal substantive differences in the features
of interest here (see section 3.2 below for a comparison). That is somewhat counter-
intuitive, since our proposed scheme depends on breaking waves to provide the tur-
bulence. However, the non-hydrostatic terms in the vertical momentum equation only
contribute to the evolution of the breaking, not to its actual onset. This would require a
considerably more isotropic simulation grid than desirable for these scales, and would
be amenable to a more isotropic mixing scheme as well. For most runs, horizontal
viscosities and diffusivities were kept as low as numerically feasible, at 10−4 m2 s−1,
except where noted.

2.1. Vertical Turbulence Schemes
Constant Viscosity. These runs compare with Legg and Huijts (2006) and Legg and
Klymak (2008) who used high vertical and horizontal viscosities Az = 10−2 m2 s−1,
and AH = 10−1 m2 s−1. In those papers, explicit mixing was set to zero, and handled
numerically by a Superbee advection scheme (van Leer, 1979). In all our simulations
shown here, the diffusivity was set to be the same as the viscosity, except for a sen-
sitivity study that shows small differences in the dissipation due to the higher-order
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scheme (section 4). The constant viscosity runs have the simple advantage that dissi-
pation is relatively easy to compute from the flow field and local shears, and so long
as the model is well-resolved, gives an accurate representation of the simulated dissi-
pation. The disadvantage to this scheme is that the Reynolds number can be too low
to allow turbulent features to develop in the first place, and that it can place too much
dissipation in regions that are not expected to be turbulent.

Mellor Yamada, 2.0. The Mellor-Yamada formulation used by the MITgcm is a second-
order local model. This version of the scheme does not solve a prognostic equation
for the turbulent kinetic energy (so this is not to be confused with what is commonly
called “Mellor-Yamada 2.5”). This scheme enhances viscosity above an arbitrary back-
ground of Az = 10−5m2 s−1 if Ri = N2/S2 < 0.25, and viscosity becomes very high if
Ri < 0 in density overturns (figure 1). With no capping, the maximum viscosity is
4× 10−1 m2 s−1. The implementation used here allows a cap to this value, adding an
adjustable parameter Amax. The production of turbulent kinetic energy implied by this
relationship between viscosity and Richardson number is the same as for the more elab-
orate MY2.5, but in the local scheme energy is assumed to be dissipated locally rather
than propagating to remote grid cells; in this paper we refer to this as MY2.0. While
we used MY2.0 rather than MY2.5 because that was the scheme already implemented
in the MITgcm, it is likely that similar results would be found with MY2.5 because the
production of turbulence is the same in both schemes, and this production term, rather
than the diffusion and advection of TKE, is the principal difference introduced by our
new scheme below. Similarly the choice of critical Richardson number has little influ-
ence on our comparison, since the flaws in the MY schemes which we are addressing
here occur for Ri < 0.

-10 -5 0
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100

Ri=N2/S2

A z [m
2  s

-1
]

Figure 1: Mellor-Yamada 2.0 scheme used in the MITgcm. Negative Richardson num-
bers mean that the stratification is unstable. The dashed line is Ri = 0.25. The back-
ground value of Az = 10−5 m2 s−1.

New scheme. The high diffusivity in the MY2.0 scheme is appropriate for boundary
layers, where a turbulent length scale can be calculated or estimated from similarity
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theory. It is not appropriate to turbulence generated by breaking waves inside the model
domain. Instead we propose a simple scheme whereby each vertical profile in the
domain is sorted so there are no overturns (Thorpe, 1977) and the distance each parcel
has been moved, ∆z, is related to the dissipation at that location:

ε = (∆z)2 N3
S (2)

where N2
S is the square of the buoyancy frequency of the sorted profile, and should be

greater than (or equal to) zero. The turbulent diffusivity is then assumed to be

Kz = ΓεN−2
S = Γ(∆z)2 NS (3)

where Γ = 0.2 is the nominal flux coefficient and Kz has been estimated following
Osborn (1980). The Osborn model is appropriate for turbulent mixing in flows which
are overall stably stratified, as here. However, this mixing cannot take place without
local overturns, and our focus here is the scenario in which these local overturns are
resolved by the model, but the turbulence is not. Because the buoyancy Reynolds
numbers are so large, and in the absence of compelling guidance otherwise, we then
assume a turbulent Prandtl number of one, so that Az = Kz.

An example of calculating ε from an oscillating tidal flow over topography is shown
in figure 2. Large isopycnal displacements lead to non-linear bores at this location in
the model, driving the turbulence predicted by this scheme. An example density profile
has overturns (figure 2b) that correspond to vertical displacements ∆z (figure 2c), yield-
ing dissipation rates of up to ε = 10−4 m2 s−3, in this case at the bottom of the overturn
(figure 2d, thick line). Averaging these inhomogeneous events over 20 minutes yields
an 80-m thick region of average dissipations close to 10−5 m2 s−3 (figure 2d, thin line).
The flow regime and turbulence levels in this model are similar to that observed at
Hawaii (Klymak et al., 2008).

There are a number of objections that could be raised about this simple parame-
terization, and the choices of turbulent Prandtl number and flux coefficient could be
refined in future. However, the goal here is to move beyond the excessive diffusivities
implied by Mellor-Yamada-type schemes in overturns, or the arbitrariness of constant
diffusivities. One major limitation is that this scheme does not work in well-mixed
fluids where NS = 0, (we are assuming that the flow is, following the Thorpe reorder-
ing, stably stratified), a second is that it does not account for shear-instabilities if they
are not resolved in the model. We have also been somewhat lax in our definition of
the dissipation in an overturn. The proper definition of the mean dissipation over an
overturn would be 〈ε〉 = ∆z2 〈N〉3, whereas our calculation will give 〈ε〉 = ∆z2 〈N3〉.
It will also distribute the dissipation somewhat idiosyncratically where ∆z is locally
large. We do not choose to worry about these details because the correlations that are
used to justify the relation between the Ozmidov scale and the Thorpe scale are poorly
constrained (Moum, 1996) and the added “precision” of averaging N or ε over an over-
turn requires significantly more computational complexity in identifying overturning
patches and performing the average. This is further justified because the variation of
stratification in overturns tends to be modest (figure 2b).

The scheme is implemented on the vertical profile from each horizontal grid cell
independently. A sorted profile of density is determined using a simple insertion-sort
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Figure 2: An example of the proposed scheme at a single location in a simulation of os-
cillating stratified flow over an obstacle. This is taken at x= 2.5 km from the simulation
presented below (figure 8). a) Dissipation in the water column, with density contours
over top. Density contours are from every 50 m in the background density profile. The
black vertical bar indicates the profile plotted in the other panels. b) density profile be-
tween 300 and 450 m, both before and after sorting. c) vertical displacement necessary
to make the profile sorted. d) Turbulence dissipation calculated for this profile (heavy
line) and the 20-minute average around when this profile was taken. e) Diffusivity for
this profile (heavy line) and the 20-minute average.

algorithm (Press et al., 1992). This algorithm is not well-suited to very turbulent flows,
but for relatively laminar flows with rare overturns it should be faster (∼ O(n), where
n is the number of data points) than more advanced sorting algorithms like quicksort
(O(n logn)) that assume randomized data. For the simulations we are interested in
here, overturns are localized to near the topography, so much of the model domain
is indeed laminar. Because the sorting is local, the memory requirements are a small
multiple of the number of vertical grid cells. For our model runs, this sorting step had
an imperceptible effect on execution time.

3. Examples

3.1. Steady Flow over a Large Obstacle
For the first example we consider steady flow over a large obstacle, similar to model

runs presented earlier (Klymak et al., 2010). Here a steady flow passes over a fixed
obstacle such that NH/Uo >> 1, where H is the water depth, and Uo is the steady
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Figure 3: Velocities and density contours for four different turbulence mixing schemes
used to simulate steady flow over large topography. All were run with um/N(H−hm) =
um/Ndm = 0.023 a) Az = 10−5 m2 s−1, b) Az = 10−2 m2 s−1, c) local Mellor-Yamada,
and d) the proposed overturning scheme.

velocity. For these runs the maximum viscosity in the Mellor-Yamada scheme was
allowed to be the maximum allowed by the default parameters: Amax = 0.4 m2 s−1.

As discussed in Klymak et al. (2010), this flow is best parameterized with the
barotropic flow over the ridge crest um = UoH/(H − hm), where hm is the height of
the topography. For the runs here N = 5.2×10−3 s−1, H = 2000 m, H −hm = 1000 m,
and Uo = 0.03 to 0.18 ms−1. An example of the results for Uo = 0.06 ms−1 demon-
strates the differences between the mixing schemes (figure 3,figure 4). The large-scale
response is essentially the same in all four cases, with a stagnant layer forming up- and
downstream of the obstacle, and acceleration of the flow above to near um = 0.06 ms−1.
The high-mode response is relatively similar as well, with arrested waves just down-
stream of the crest that have vertical wavelengths λz ≈ 2π um

N ≈ 144 m. There are,
however, differences in the details of exactly how the high-mode response looks. The
low-mixing run has a number of small scale instabilities that obscure the response,
while the other three methods have differences in the exact character of the response.

The biggest difference is the dissipation in each run (figure 4). We integrate the
dissipation (figure 4) for the whole water column between −25 km < x < 25 km, to get

D =
∫

A

[
Az

(
∂u
∂z

)2
+Ah

(
∂u
∂x

)2
]

dA (4)
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Figure 4: Example dissipation in model runs with steady stratified flow over a large
obstacle. The totals are area-integrated dissipation ([m4s−3]) with DB the difference in
the Bernoulli flux past x =±25 km, and D the reported dissipation.

The dissipation is very small for the Low-mixing case (figure 4a) and high for the
Mellor-Yamada case (figure 4c), and similar for the High-mixing and New cases. The
greatest difference between the High Mix case and the New case is the spatial depen-
dence of the dissipation. The dissipation in the High Mix case is spread through the
domain whereas the dissipation with the New model is localized in the jumps directly
in the lee of the obstacle (figure 5). Given this, we might expect that for weaker flows
the High-Mix case may start to report higher dissipation rates than the New case.

The rate at which energy is dissipated can be independently calculated from the
flow. These examples are in steady state, so the dissipation of energy in the flow is

DB ≡
∮

Bu ·dA (5)

where B = 1
2 u2 +P+ gz . The drop in energy flux includes both explicit dissipation,

calculated as D, and unknown numerical dissipation. Therefore we have two types of
inaccuracies:

• The model numerically dissipates the “right” amount DB, but the mixing scheme
does not correctly report this value (D )= DB).

• The model does not dissipate the “right” amount as predicted from the flow pa-
rameters (DB incorrect).
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Figure 5: Dependence of the reported dissipation for the High Mix and the New dissi-
pation schemes on horizontal location. The cumulative dissipation shows how localized
the new scheme is.

Naturally we would like the mixing scheme to dissipate the “right” amount and “re-
port” that amount accurately. The problem is that a-priori theories for the strength of
dissipation in any flow are hard to come by, so here we resort to comparing model
ensembles. In the examples above, we find that the Low Mixing case (figure 4a) has a
low model dissipation DB, and that even this low dissipation is grossly under predicted
(D < DB). MY2.0 has a slightly lower dissipation than High Mix and New, but it is
the same order of magnitude; however it greatly over-reports the total dissipation in the
model (D > DB). Both High Mix and New report similar dissipations via both methods
(D ≈ DB).

A systematic comparison over a range of resolvable um/Nhm demonstrates the util-
ity of the various schemes (figure 6). First, all the schemes dissipate roughly the same
amount of energy loss through the model (DB, figure 6a and b), with the very low mix-
ing case (Az = 10−5 m2 s−1) being the prime exception. This loss of energy is because
such low-viscosity runs develop small scale numerical instabilities that drain the mean
flow of energy. In general the lower constant-viscosity runs have slightly lower energy
losses, but the difference is not great. This constancy in the energy lost is expected in
this flow regime where the energy loss is determined by the hydraulic jump in the lee of
the obstacle, which is itself determined by the need of the downslope flow to match the
downstream flow. Unless the mixing scheme drastically alters the response, DB should
be a constant property of the flow, and set by matching the hydraulic conditions at the
obstacle crest to the downstream conditions (Baines, 1995).

The similarity of the schemes does not persist when the “reported” dissipation D is
compared to the energy loss DB (figure 6c). MY2.0 greatly over-reports the dissipation
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Figure 6: Comparing four different mixing schemes. a) 2-D integrated energy dissipa-
tion for different runs classified by (Nhm/um)−1, as calculated by the drop of energy
over the obstacle DB. b) The ratio of the dissipation DB to Do =

3
2 π(H −hm)u3

m, which
is a relatively good scaling for this flow regime. c) The ratio of the model reported
dissipation D, and the observed energy drop DB. The “No-mixing” and “MY” runs
were only made at three flow speeds.

(squares). Most of the dissipation is occurring in overturns in the lee of the obstacle
(figure 4c), so Az ≈ 10−1 m2 s−1 which is too high. This leads to the energy lost from
the mean flow ε+KzN2 = AzS2 to be over-reported because the shears are significantly
reduced over a timestep; the time-scale to diffuse the 10 m shears is approximately 10
s, which is less than the 12-s timestep.

Similarly, the constant-viscosity runs can over- or under-report the dissipation (fig-
ure 6c, diamonds). If the viscosity is too low, numerical dissipation makes up the
difference. If it is too high, over-reporting occurs. Note that Az = 10−2 m2 s−1 does not
do a bad job of reporting the dissipation (figure 6c, medium gray diamonds), but has a
distinct trend to under-report the more turbulent runs and over-report the less turbulent
ones. For this flow regime Az = 10−2 m2 s−1 is a fortuitous choice for the constant
viscosity. The distribution of vertical viscosities using the New scheme indicates why
this is the case (figure 7) with the median of the PDF very near Az = 10−2 m2 s−1.
However, as noted above, we do not feel this puts the dissipation in the right places in
the water column, and it is still an arbitrary choice that would not be valid if the flow
regime were different. We could improve the MY scheme with a similar tuning, but
again, it would be tuning parameters for a particular regime.
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over an obstacle case, with increasing flow velocities.

3.2. Oscillating flow over a Gaussian bump
The original motivation for this study was oscillating flow over a submarine ridge.

Here we consider four ridges, hm = 300,500,1000 and 1500−m high in H = 2000 m
of water. All the ridges are Gaussian, with W = 10 km. Tidal forcing every 12.4 h
on the boundaries induces Uo = 0.04,0.08,0.12,0.16,0.20, and 0.24 ms−1 barotropic
flow in the deep water, and UT = Uo H/(H − hm) barotropic flow over the obstacle.
All runs were made with a constant stratification N = 5.2× 10−3 s−1, and carried out
with the same grid configuration used for the steady case. Here we used a maximum
viscosity for the MY 2.0 scheme of Amax = 10−2 m2 s−1.

As above, energy is diagnosed by comparing the energy divergence in the model to
the diagnosed dissipation (equation (5)). In a tidal flow this budget is never in steady
state, introducing another term:

DE(t)≡− ∂
∂t

∫

V
E dV +

∮
Bu ·dA, (6)

where E = 1
2 u2 +gz is the energy density. The terms on the right hand side are large,

but almost balance to give a small dissipative residual DE , so it is imperative that these
terms are diagnosed at every time step in the model, otherwise small errors in phase be-
tween two sides of the volume dominate actual divergences and good energy estimates
cannot be attained. One could linearize the energy sinks and sources (i.e. by using a
linear potential energy Gill, 1982), but this approach requires us to assume the energy
content in the volume is in steady state, which is not true due to the background po-
tential energy changing due to mixing. A proper available potential energy calculation
(Lamb, 2008) may yield better results, but as that requires expensive global sorting, we
decided that it made more sense to simply do the absolute energy balance completely.

It should also be noted that we do not reach a complete energetic steady state with
these runs in six tidal periods because slow high-mode waves do not reach the edge of
the control volume. The runs could be made longer, but at significant computational
cost.

11



−600

−400

−200

0

D
E

P
T

H
 [

m
]

Tidal flow: U
0
 = 0.12 m/s, h

m
 = 1500 m

−5 0 5

−600

−400

−200

0

−5 0 5 −5 0 5
X [km]

ε [m2 s−3]

−8 −6 −4

Figure 8: Hourly snapshots of energy dissipation using the New scheme for forced
semi-diurnal barotropic tidal flow over a Gaussian bump. Peak flow is in the second
frame in the positive-x direction.

This issue with diagnosing the energy is demonstrated in figure 9, where the dif-
ference between a fully diagnosed energy budget (a–d) and one from snapshots taken
every 20 minutes (e–h) are compared for a volume that is ±70 km from the obstacle
crest. The energy fluxes into and out of this boundary are very large (though the ex-
act magnitude depends on the definition of z = 0, and is therefore not unique). The
difference between the energy divergence is balanced almost completely by the rate
of change of energy in the volume. The residual is very small (d) and not properly
represented in the 20-minute snapshots (h).

This comparison also makes the point that the high-viscosity runs do not do a very
good job of tracking the energy dissipation in time (figure 9d). In contrast, the same
calculation made on the new mixing scheme tracks the energy residual with time (fig-
ure 10d) more accurately, implying that the viscosity from the mixing scheme will yield
useful diagnostics of energy loss.

The results over a large number of runs are similar to those attained for the steady-
flow runs (figure 11). A “theoretical” dissipation, DT (H,hm,Uo,N), is used to nor-
malize the dissipations (and is described in a manuscript in draft); while we believe
this theoretical dissipation has some usefulness, the reader is welcome to consider it a
scaling that happens to agree with our New overturn-based dissipation. However, it is
clear that using constant viscosities Az = 10−2 and 10−1 m2 s−1 yields dissipations that
depend on the value of the viscosity (figure 11a–f). As in the steady case, the reported
dissipations (D, figure 11a–c) have the greatest variation, whereas the energy loss in
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Figure 9: Time series of energy budget for a volume between x = ±70 km using con-
stant Az = 10−2 m2s−1. a–d) are using a full budget diagnosed at every time step of
the simulation, while e–h) is the same budget from snapshots taken every 20 minutes
(37 times a tidal period). a) and e) are the linear (dashed) and non-linear (solid) energy
fluxes, the two lines representing the in- and out-going fluxes. b) and f) is the total flux.
c) and g) are the flux divergences compared to the rate of change of energy in the vol-
ume; these two values lie almost one atop the other. d) and h) is the difference between
the energy flux divergence and the energy change in the volume (solid) compared with
the prescribed dissipation (gray). Note the difference in scale between d) and h).

the model (DE , figure 11d–f) tends to be more constant. Unlike the steady runs, the
MY2.0 scheme tends to under-report the dissipation in the oscillating runs.
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Figure 10: As for figure 9 except for the overturning-based dissipation proposed here.
Again, note that d) and h) are different scales.
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Figure 11: Dissipation in tidal runs for different mixing schemes: a–c) dissipation re-
ported by the viscocity D, compared to a theoretical estimate of the dissipation DT . d–f)
dissipation calculated from an energy budget DE . g–i) The ratio of reported dissipation
to diagnosed dissipation: D/DE .

The mixing scheme proposed here has the best characteristics of the schemes tested.
It underestimates the dissipation slightly for the smallest (and thus least turbulent) ridge
(figure 11d), and overestimates slightly for the most turbulent (figure 11f). The size of
the lee waves that drive much of the turbulence can be estimated from the tidal flow
and stratification as λ0 = 2πUT/N. If there is insufficient resolution in the model to
resolve these waves then there is little hope they will break and be well-represented by
the mixing scheme.

Again, the differences in where the dissipation takes place are the same as for the
steady flow case: the high-viscosity spreads the dissipation out over a larger region
where tidal energy creates shears in the flow (figure 12a,b). These shears, however, are
stable to shear instabilities (Ri > 0.25), and therefore do not produce extra dissipation
in the MY2.0 (figure 12c,d) or the new mixing scheme (figure 12e,f). All three schemes
predict strong mixing in the lee of the obstacle during both phases of the tide.

As a final note, we tested the importance of hydrostaticity for the New mixing
scheme in these simulations (figure 13). For both reported dissipation and the energy
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Figure 12: Mean dissipation over a tidal period for Ut = 0.16 ms−1, hm = 1500 m, and
N = 5.2×10−3 s−1 for three mixing schemes. Upper panels (a,c,e) are depth integrals
of the dissipation as a function of distance from the obstacle.

divergence, the response was almost identical for the model run in hydrostatic and
non-hydrostatic configurations. The differences did seem to be larger for larger forcing
(figure 13e,f), perhaps indicating that the dynamics inside the larger breaking waves
were playing a role, however, the time-smoothed averages were not significantly dif-
ferent. Note again, that the model has a 10:1 aspect ratio in the grid cells near the
obstacle, so the lack of strong non-hydrostatic effects is not surprising. Experiments
with more horizontal resolution may turn up more substantive differences, but again,
such simulations could be made with a more isotropic mixing model that acts on the
turbulent scales themselves.

4. Resolution and Advection-Scheme Limitations

The MITgcm, or any numerical model that we know of, does not explicitly try to
conserve mechanical energy, so the ability to attain near-balances as we have attempted
to show above, is encouraging. There are a number of limitations to the new scheme
(and the other schemes) that should be accounted for, and we attempt to discuss them
here.

First, the energy dissipation depends somewhat on the advection scheme used.
Most of the runs in this paper were made with a simple and efficient second-order
scheme. This scheme is quite noisy, and some of this noise goes into producing extra
dissipation in the model. This is seen most clearly when considering the resolution de-
pendence of all the schemes (figure 14). Here the same runs were made with finer res-
olutions. All the schemes demonstrate more dissipation as the resolution is increased.
However, the New scheme does so more precipitously. A 2.5-m resolution run shows
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Figure 13: Comparison of hydrostatic and non-hydrostatic dissipation and energy loss
from three forcings over a Gaussian obstacle.

even more dissipation, indicating that increasing vertical resolution makes the dissipa-
tion grow too much. It is relatively difficult to tell what causes the extra dissipation,
but it is not just a simple reporting error as it shows up in both D and DE . We sug-
gest that the extra dissipation is occurring because finer resolution allows more noise
to develop due to inaccuracies in the advection scheme, which makes more overturns
and therefore more dissipation. The constant-viscosity simulations also have increased
dissipation with resolution, but the increase is smaller.

If we use a nonlinear limited advection scheme (figure 14b), in this case the Su-
perbee flux-limited scheme, we find that the increase in dissipation with increased res-
olution is almost the same as the constant-viscosity runs. However, the solutions are
smoother and the dissipation driven by overturns is now somewhat lower than before
for the base 10-m runs.

We consider the difference in dissipations in the New scheme more systematically
with a set of experiments of tidal flow over a ridge using the nominal 10-m resolution
(figure 15). In general, the second-order scheme has higher dissipations than the flux-
limiting scheme for all dissipations, with the second order scheme over-reporting the
dissipation (figure 15a, circles) and the Superbee scheme under-reporting (figure 15a,
diamonds). The two schemes tend to dissipate the same amount of energy from the
model (DE , figure 15b) except for the least-turbulent flows, where the Superbee scheme
removes more energy from the flow than the 2-nd order. This is consistent with the
Superbee scheme having some additional numerical diffusion.

As mentioned above, the mixing scheme and the simulations have a natural limit
where the vertical resolution becomes too coarse to resolve the waves in the lee of the
obstacle.
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5. Summary

We have presented a simple mixing scheme for models that resolve breaking inter-
nal waves based on the Ozmidov scale implied by these breaking waves. We expect this
scheme will be the most useful for parameterizing mixing in strong flows over topog-
raphy, with particular application to internal tide generation and reflection problems. It
may also be useful for mean-flows over rough topography such as might occur in the
Antarctic circumpolar current.

There is a slight cost to the scheme in terms of memory and processor time. The
sorting algorithm should be relatively cheap except for very turbulent flows.

We have used some simplifying assumptions that are common in the literature such
as that the Prandtl number is one and that the flux coefficient Γ is a constant. There
is significant interest in if these assumptions are valid (i.e. Gargett and Moum, 1995;
Smyth et al., 2005, 2001) that is beyond the scope of our study here.

The major limitation of our new mixing scheme is that the largest mixing events
should be driven by breaking waves rather than unresolved shear instabilities. For
instance, in the tidal mixing over the Knight Inlet sill there is clear evidence of both
shear instability and breaking in the lee wave (Farmer and Armi, 1999; Klymak and
Gregg, 2004). For the flows discussed in this paper resolved shear instability was very
rare; the Mellor-Yamada mixing was almost always maximized, indicating that it was
responding to convective instability, rather than high shears (figure 12). However, if
a flow was being considered where shear instability was also thought to be important,
such as larger-scale overflows (Legg et al., 2009), it would be very easy to make a
hybrid mixing scheme that also enhanced mixing in shear layers. Rather than the profile
in figure 1, one could imagine the same profile for Ri > 0 and then an abrupt transition
to the overturning mixing for negative Richardson Numbers. Alternate shear-driven
schemes, such as that proposed by Jackson et al. (2008), could also be added.
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