Working with attention, memory and executive functions in children

Effective Strategies

Presented by
Kimberly A. Kerns, Ph.D.

UNIVERSITY OF VICTORIA
BRITISH COLUMBIA • CANADA
Why attention, memory and executive functions?

- Commonly disrupted following TBI due to dependence on frontal and temporal systems
- Each can have a major impact on learning and school performance
- Attention and executive functions are also frequently disrupted in developmental disorders
Basic approaches to intervention

- Environmental modifications
- Use of and training in compensatory skills and special teaching techniques
- Direct training of impaired processes
Factors to consider in selecting interventions

- The specific cognitive ability impaired
- Time post injury in acquired disabilities
- Overall pattern of abilities in the child
- Level of support available to the child
- Level of insight and awareness that the child has
Conditions impacting attention and concentration

- Acquired disorders
 - Traumatic brain injury, brain tumors, anoxia, treatment for medical conditions (radiation, chemotherapy, etc...), use of anticonvulsants, toxic exposures

- Developmental disorders
 - ADHD, learning disabilities, depression, anxious disorders, Autism, prenatal alcohol exposure (FAS, FAE), prenatal drug exposure (cocaine, crack), intellectual handicaps
What do we know about the development of attention?

- Capacity or information processing perspective
 - *Suggest that younger children have a more limited attention capacity and as they develop there are changes in internal processing mechanisms which increase this capacity*

- Perceptual learning perspective
 - Attention is defined as perceiving in relation to a goal: from infancy to childhood the exploration and perception become more specific, systematic, economical and task directed. Good attention is defined as efficient perception of information that has utility for a task
How does attention change with development?

- Capacity increases as a function of development
- Capacity increases as a function of changes in speed of processing
- Capacity increases as a function of improvement in other cognitive abilities
 - Language, sub-vocal rehearsal, chunking
- Capacity increases as function of increases in inhibitory control
 - Not processing irrelevant information or improving selection
How do we define ‘attention’

- The amount of information that can be attended and responded to in some finite amount of time

- Concepts include
 - Working memory
 - Vigilance
 - Selectivity
 - Effortful vs. automatic processing
Theories or ‘models’ of attention

Mirsky et al (1991)
- Focus-Execute: ability to select target information from an array - to selectively attend
- Sustain: capacity to maintain and focus alertness over time and demonstrate vigilance
- Shift: ability to change attentive focus in a flexible and adaptive manner
- Encode: ability to maintain information in memory and actively manipulate this information
Theories or ‘models’ of attention

 - Focused attention: ability to respond to a specific stimulus
 - Sustained attention: ability to continuously respond to a specific stimulus
 - Selective attention: ability to respond to a specific stimulus in the presence of distracting stimuli
 - Alternating attention: ability to efficiently shift attention from one stimulus to another
 - Divided attention: ability to attend to more than one simultaneously occurring stimuli
How do we assess attention?

- Direct observation
 - During testing session
 - Classroom observation
 - Tallying ‘on-task’ behavior in a constrained situation

- Parent/Teacher Report
 - Connor’s, ADDES, CBCL

- Psychometric Assessment
 - Hierarchical model of attention
 - Sustained, selective, alternating, and divided attention
Assessment of Sustained Attention

- Can the child maintain attention long enough to accomplish age appropriate tasks
- Psychometric Assessment procedures
 - CPT tasks (Connors, Gordon, TOVA, etc…)
 - Digit span, number letter, finger windows
 - Children’s PASAT
 - Scanning and underlying tasks (D2, Talland, NEPSY Visual Attention, etc…)
 - Auditory Attention measure (NEPSY)
Assessment of Selective Attention

- Can the child attend to selected stimuli and disregard stimuli not relevant to the task?

- Psychometric Assessment procedures
 - GFW Selective Attention task
 - Gordon Diagnostic – Selective attention
 - Stroop tasks
 - Attentional Capacity Test
Assessment of Divided and Alternating Attention

- Can the child divide and shift attention adequately for effective classroom or social functioning?

Psychometric Assessment procedures

- Coding subtest of the WISC-III
- Consonant Trigrams
- Selective Response – NEPSY
- Trailmaking Test – B, Color Trails
- 6-Element type tasks (Shallice)
- Development of a ‘multi-tasking’ measure
Remediation of Attention Difficulties

- **Direct interventions**
 - Medications
 - Behavior modification programs
 - Cognitive behavioral approaches
 - Attention Process Training – Pay Attention

- **Compensation**
 - Cueing devices – mechanical
 - Breaking tasks down (teachers, parents)
 - Cueing by peer, teacher, parent

- **Restructuring environment**
 - Limiting environmental disruptions
 - Providing simplified tasks
Example of a ‘Pay Attention’ Family
Example of a ‘Pay Attention’ House
Examples of components altered in ‘Pay Attention’ tapes

- Difficulty of target selection
 - Hit the buzzer for things that are round, things you see in the sky, words that begin with the letter ‘B’, numbers ascending, days of the week ascending, numbers descending

- Speed Component
 - Slow/fast

- Distraction level
 - None/heartbeat/story/children playing
Sustained Attention Tasks

- **Visual Tasks - I**
 - Card Sorts into Stacks
 - by single feature (such as card color, hair color, hat/no hat, sex, age group, etc...) or by multiple features
 - House search
 - find single items (such as red things, flowers, things on wall, things on floor, etc...) or find 2 items

- **Visual Tasks - II** (Examiner Paced Tasks)
 - Card Sorts
 - participant has a response button and identifies when the target conditions. Example target conditions:
 - people with brown hair & glasses, blonde followed by a brunette, etc...
Sustained Attention Tasks

- **Auditory Sustained Attention - Tape Set I**
 - Subjects listen for targets and push a response button when they hear them
 - 8 tapes, presented at both a slow and fast pace, tasks start simple and get more difficult
 - Listen for the word red, dog, red or yellow, “B” words, things found in the sky, letters ascending, numbers descending, etc...
Selective Attention Tasks

- **Visual Distractors**
 - Distracting visual overlays are placed over the house stimuli - searches are conducted as in the visual sustained attention tasks.
 - Visual tasks are completed as before, but now distracting noises (such as children playing on a playground are played on tape while participants complete tasks).

- **Auditory Selective Attention**
 - Tapes are played as for auditory sustained attention, but there are distracting auditory stimuli in the background.
 - Tapes increase in complexity as before, distracting auditory stimuli include the sound of a heartbeat, baby crying, someone telling a story, and children playing.
Alternating Attention Tasks

- **Visual Alternating Attention - House Search**
 - The participant has 2 objects which they are searching
 - using one pen color to mark targets, when the examiner
 says switch, change pens and looking for 2nd object

- **Visual Alternating Attention - Cards**
 - Sorting into 2 stacks by identifying features which
 examiner switches; glasses to hats

- **Auditory Alternating Attention**
 - Listening for 2 target words,
 - first word first, then examiner says switch and
 participant listens for the new word, examiner may
 “switch” several times
Divided Attention Tasks

- **Visual Divided Attention - Card Sort**
 - Sorts cards into stacks by some target criteria.
 - An additional rule is used, cards that meet an additional criteria are not only sorted into the correct pile, but placed face down for example.

- **Auditory/Visual Divided Attention - Card Sort or House and Tapes**
 - Participants have two tasks which they do simultaneously.
 - Might sort cards by some criteria while also listening to a tape for a target word. For example, cross out red things in the houses while listening for words that begin with “B”
Improvements following ‘Pay Attention’ in ADHD

<table>
<thead>
<tr>
<th>Treatment Condition</th>
<th>Treatment</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean % Improvement</td>
<td>80</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>-20</td>
</tr>
</tbody>
</table>

- Day-Night Stroop
- WISC-III Mazes
- Matching Fam. Figs.
- Underline Sustained
- Underline Selective
- Attentional Capacity
- Math Efficiency
Changes on Sustained Attention Task by Subject
Examples of Stimulus Sheets You Could Create
Examples of ‘Order by Size’ Working Memory Tasks

Order from Smallest size to Largest size

<table>
<thead>
<tr>
<th>Order</th>
<th>Smallest</th>
<th>Largest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elephant</td>
<td>Mouse</td>
<td>Football</td>
</tr>
<tr>
<td>Desk</td>
<td>Bus</td>
<td>Peanut</td>
</tr>
<tr>
<td>Moose</td>
<td>Pencil</td>
<td>Shirt</td>
</tr>
<tr>
<td>Paperclip</td>
<td>Car</td>
<td>Lunchbox</td>
</tr>
<tr>
<td>Book</td>
<td>Mountain</td>
<td>Tooth</td>
</tr>
<tr>
<td>Nail</td>
<td>Picture</td>
<td>Airplane</td>
</tr>
<tr>
<td>Building</td>
<td>Ring</td>
<td>Shirt</td>
</tr>
<tr>
<td>Wristwatch</td>
<td>Matchbook</td>
<td>Computer</td>
</tr>
<tr>
<td>Magazine</td>
<td>Key</td>
<td>Boat</td>
</tr>
<tr>
<td>Car</td>
<td>Suitcase</td>
<td>Stapler</td>
</tr>
<tr>
<td>Car</td>
<td>Suitcase</td>
<td>Stapler</td>
</tr>
</tbody>
</table>
Temporal Distinctions in Memory

- Duration based distinctions
 - Immediate memory/rote recall/span
 - Working memory
 - Short term memory (up to 30 minutes)
 - Long term memory

- Injury related distinctions
 - Retrograde – loss of memories before the injury
 - Anterograde – loss of ability to store new memories
Other Major Distinctions in Memory

- Semantic versus episodic
 - Semantic – knowledge of facts, meanings
 - Episodic – knowledge of episodes
 - Material specific effects (verbal/nonverbal)

- Procedural versus declarative
 - Procedural – perceptual motor skills, routines (unconscious level)
 - Declarative – episodic and semantic (conscious level)
How do we assess memory in children?

- **Tasks**
 - Immediate recall
 - Delayed recall (e.g. 30 minutes)
 - Recognition (usually easier than recall)
 - Learning with opportunity for repetition

- **Types of materials to be learned**
 - Verbal (word lists, stories, sentences)
 - Nonverbal (designs, faces, locations)

- **Published Tests**
 - WRAML, CMS, TOMAL, C-CVLT, NEPSY subtests
How can acquired brain injury affect memory?

- Impaired concentration can lead to poor input into memory systems
- Impaired processing can lead to poor encoding of information in memory
- Learning can be slow and inefficient
- Difficulty with long term storage and retrieval of information
- Old knowledge often remains intact
Remediation of Memory Difficulties

- Restructuring environment
 - Use of cues, lists, reminders, alarms
 - Modified tests (e.g. recognition format)

- Direct interventions
 - Improving attention
 - Repetition, elaboration
 - Verbal organization (paired-word associations, pegwords, etc)
 - Visualization strategies

- Compensation
 - Modified instruction via error-free learning or direct instruction
 - Memory books, organizers, etc...
 - Cueing by peer, teacher, parent
How might children with memory difficulties learn best?

- Clinical studies have shown that procedural memories are often less impaired
 - Lots of repetition
 - ‘Do’ as opposed to just ‘say’
 - Focus on skills
- Clinical studies have shown implicit memory is often better than explicit
 - Use priming techniques
 - Use of errorless learning
Error-free or errorless learning

- Children with explicit memory impairments may have a difficult time separating correct and incorrect responses.
- Incorrect responses often become ‘primed’ and they are what is remembered next time.
Error-free learning strategies

- Decrease the likelihood of errors through cues, prompts and even providing the correct answer until the knowledge or skill is stabilized.

- Provide many correct repetitions to enhance procedural learning and implicit memory for the skill or information to be learned.
Examples of error-free learning

- Use in new skill learning
 - Teaching steps to use a memory compensation system (memory organizer)
- Use in acquisition of new knowledge
 - Names of teachers or fellow students
Comparison Error-free vs Errorful Training Effects

% Correct Responses

9 Learning Trials

Step in Process

2 6-step processes for using an electronic organizer
Similarities between errorfree learning and ‘Direct Instruction’

- Both you work with the child at a level that ensures a high rate of success and minimizes errors
- Both provide sufficient repetition
- Both maintain his levels of motivation and feeling of success
- Both emphasize not be afraid to provide a correct answer
- Both use ‘discovery’ techniques very selectively or on a limited basis
External Memory Compensation Systems

- Should be theoretically based
 - Utilize intact procedural memory
 - Training based in learning theory

- Individuals must be properly trained to utilize a system
 - Taught to apply skills in natural environment
 - Need lots of opportunity to practice
 - Don’t expect generalization, plan and effect it
 - Intensive training may be necessary to establish procedural memory routines for system use
External Memory Compensation Systems

- Family members and critical individuals should support and assist in use of system
- Clinician must ensure the system is functional and make necessary modifications
 - Match the system to the individual
 - Assess reasons for failures with system
 - Match memory system to related types of impairment
Memory system functions related to impairment

- Semantic memory difficulties
 - Autobiographical memory, addresses, phonebook, names and faces list, personal goals

- Episodic memory difficulties
 - Diary, journal/logs

- Retrograde memory difficulties
 - Autobiographical information, maps, locker info

- Procedural memory
 - Written routines for school, home, etc…
Three-Phase Training Model

- Knowledge and awareness
 - Child learns names, location and use of memory system sections

- Practice training phase
 - Learn and practice use of memory book
 - Develop procedural learning

- Generalization
 - Learn to use the system in naturalistic and novel contexts
 - Learn to use system spontaneously
Conditions impacting executive function

- **Acquired disorders**
 - Traumatic brain injury, brain tumors, anoxia, treatment for medical conditions (radiation, chemotherapy, etc…), toxic exposures

- **Developmental disorders**
 - ADHD, learning disabilities, Autism, prenatal alcohol exposure (FAS, FAE), prenatal drug exposure (cocaine, crack), intellectual handicaps, OCD/Tourette’s
What are Executive Functions?

- Multidimensional concept
 - Any task requiring both working memory and inhibition (Pennington & Roberts)
 - Barkley’s Model

- Involves integration of information across modalities and is thought to be dependent on higher-order cognitive capacities
Complex behaviors called executive functioning

- Problem Solving
- Planning/Organization
- Prospective memory
- Decision Making/Judgement
- Self-monitoring, correction and evaluating one’s behaviour (awareness)
Executive functions are dependent on frontal lobes

- Regulation of behaviour, abilities, attitudes
- Coordinate input from other parts of brain
- Highly susceptible to damage from trauma
- Mixture of motor, behavioural, emotional and cognitive problems
Development of executive functions

- Studies suggest that executive function develops throughout childhood with some aspects developing as late as adolescence.

- We know relatively little about the development of awareness.
 - Older preschoolers can identify which of 2 students can pay better attention.
 - By 8 children recognize when it is harder to pay, recognize lack of interest decreases attention, think that the mind controls paying attention.
Developmental Study of Executive Function

- 84 children recruited from Greater Victoria School Districts
- Ages 7 - 12 (M=10.08, SD=1.72)
- 34 Males & 50 Females
- Average IQ (KBIT FSIQ M=109.7, SD=10.76)
 - excluded for neurological, psychiatric, developmental or learning difficulties
FOLLOWING DATA FROM:

Measures of Inhibition

![Graph showing measures of inhibition across different ages with Z scores and performance metrics such as Go No Go Commission, Sun-Moon Stroop, Fruit Stroop, and Golden Stroop Performance.]
Measures of Working Memory

Note: Higher scores mean superior performance
Inhibition & Working Memory

Factor 1: Inhibition
Factor 2: Working Memory

Note: Higher scores mean better performance
Executive Functions

- Perplexing paradox
 - Often see intact IQ, language skills

- Disrupt ability to function in daily activities

- Determine extent of social and vocational recovery
3 Steps to Assessment of Executive Functions

- **Standardized tests**
 - Tower tasks, Self-ordered pointing, Wisconsin, Go-No-Go, 6-Element like tasks, Delayed Alteration/Non-alternation, Cybercruiser

- **Functional assessment**
 - Parent reports, observations

- **Determine current age appropriate behaviors and pre-morbid functioning difficulties**
Measuring Prospective Memory in Children

- No standardized measures/tasks
- Most tasks or time-based PM involve the use of a clock and ability to “read time”
- Restricted range of outcome - low variability
- Difficult to assess in laboratory settings
Development of “CyberCruiser”

- Engaging to children
- Minimal age-related motor and cognitive demands
- Multiple trials of prospective task
- Enhanced timing capacity
FOLLOWING DATA FROM:

Correlation Coefficients in Normative Study Sample

<table>
<thead>
<tr>
<th>Test</th>
<th>STROOP</th>
<th>DANA</th>
<th>SOP</th>
<th>PIQ</th>
<th>VIQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out of</td>
<td>-.4315</td>
<td>.3238</td>
<td>.3722</td>
<td>-.1111</td>
<td>-.1637</td>
</tr>
<tr>
<td>Gas</td>
<td>P= .000**</td>
<td>P= .004**</td>
<td>P= .001**</td>
<td>P= .326</td>
<td>P= .147</td>
</tr>
<tr>
<td>Checks</td>
<td>.0823</td>
<td>.1402</td>
<td>.1208</td>
<td>-.0049</td>
<td>-.0331</td>
</tr>
<tr>
<td></td>
<td>P= .465</td>
<td>P= .227</td>
<td>P= .283</td>
<td>P= .966</td>
<td>P= .771</td>
</tr>
</tbody>
</table>
Results of Prospective Memory Times “Out of Gas”

- Study 1:
 - ADHD: 3
 - Controls: 1

- Study 2:
 - ADHD: 3
 - Controls: 1
Prospective Memory Task
Number of Checks

<table>
<thead>
<tr>
<th>Study</th>
<th>ADHD</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study 1</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Study 2</td>
<td>35</td>
<td>30</td>
</tr>
</tbody>
</table>

Legend:
- Red: ADHD
- Blue: Controls
Difficulties with Current Interventions

- No available overall approaches agreed upon
- Lack of empirical support for most interventions
- Differences in efficacy depending on disorder and individual characteristics
Remediation of Executive Function Difficulties

- Restructuring environment
 - Task modification
 - External supports (e.g., prompts, written instructions, signs)

- Direct interventions
 - Problem solving strategies
 - Education/awareness training
 - Metacognitive skills (study skills, self-regulation training)

- Compensation
 - Task specific routines
 - External devices
 - Written/Electronic Memory or Organizational System/Tape recorder/watch
 - Providing external structure and support
Basic Decisions for Intervention

- Identify which functions are deficient
- Younger children and early stage TBI
 - Environmental modifications
 - Cues, prompts, checklists
 - Teach task specific routines
- Older children/adolescent
 - Train active versus passive interventions
 - Train self-monitoring and self-regulatory techniques
 - Increase awareness regarding nature of difficulty
 - Provide emotional support as awareness increases
Environmental Supports

- Establish routine and consistency
- Advance planners – assist with prospective memory
- Photo assists
- Written/visual cues
- Provide choices when possible
Compensatory Systems

- Task specific instructions
- External devices
 - Memory system
Direct Interventions

- Training in awareness
- Prospective memory training
- Metacognitive strategies
That’s all –
Thanks for your time!