ECON 403: Crop Allocation Problem

Given the following information for a 1500 ac farm, construct a linear programming model that determines how much of each crop to plant. _

		Observed	Average		Average
		Acreage	Yield	Price	costs
	Crop	(ac)	(bu/ac)	(\$/bu)	(\$/ac)
-	Wheat	500	42	\$7.50	\$192.0
	Barley	200	70	\$4.25	\$169.5
	Canola	450	38	\$11.50	\$229.0
	Peas	250	45	\$6.75	\$163.8
	Oats	100	110	\$2.75	\$152.50

1. Solve the following simple model using Excel's Solver:

Maxi

Maximize
$$R = \sum_{k=1}^{n} (p_k x_k y_k - c_k x_k)$$

Subject to
$$\sum_{k=1}^{n} x_k \le 1500$$
$$x_k \ge 0$$

2. Now include the following constraint and solve the problem again:

 $x_k \leq x_k^{obs} + 0.01, \forall k$

For these constraints find the associated shadow prices, λ_k , and use this information to modify the objective function above assuming a quadratic cost function: $c_k = a x_k + b x_k^2$. Then: $b_k = 2 \times \lambda_k / x_k^{obs}$ and $a_k = c_k - \frac{1}{2} \times b_k \times x_k^{obs}$

Use the cost function in place of
$$c_k x_k$$
 in the objective function, so the revised objective is:

Maximize
$$\mathbf{R} = \sum_{k=1}^{n} (p_k x_k y_k - a_k x_k - b_k x_k^2)$$

Solve the revised problem using Solver.