Agricultural Economics and Policy: Practical \#3B

February 11, 2016

Given the following information for a 1500 ac farm, construct a linear programming model that determines how much of each crop to plant.

	Observed Acreage (ac)	Average Yield $(\mathrm{bu} / \mathrm{ac})$	Price $(\$ / \mathrm{bu})$	Average costs $(\$ / \mathrm{ac})$
Crop	500	42	$\$ 7.50$	$\$ 192.0$
Wheat	200	70	$\$ 4.25$	$\$ 169.5$
Barley	450	38	$\$ 11.50$	$\$ 229.0$
Canola	40	45	$\$ 6.75$	$\$ 163.8$
Peas	250	110	$\$ 2.75$	$\$ 152.50$
Oats	100			

1. Solve the following simple model using GAMS:

Maximize $\quad \mathrm{R}=\sum_{k=1}^{n}\left(p_{k} x_{k} y_{k}-c_{k} x_{k}\right)$
Subject to $\quad \sum_{k=1}^{n} x_{k} \leq 1500$

$$
x_{k} \geq 0
$$

2. Now include the following constraint and solve the problem again:

$$
x_{k} \leq x_{k}^{o b s}+0.01, \forall k
$$

For these constraints find the associated shadow prices, λ_{k}, and use this information to modify the objective function above assuming a quadratic cost function: $c_{k}=a x_{k}+1 / 2 b x_{k}^{2}$. Then:

$$
b_{k}=2 \times \lambda_{k} / x_{k}^{o b s} \text { and } a_{k}=c_{k}-1 / 2 \times b_{k} \times x_{k}^{o b s}
$$

Use the cost function in place of $c_{k} x_{k}$ in the objective function, so the revised objective is:

$$
\text { Maximize } \quad \mathrm{R}=\sum_{k=1}^{n}\left(p_{k} x_{k} y_{k}-a_{k} x_{k}-\frac{1}{2} b_{k} x_{k}^{2}\right)
$$

Solve the revised problem using GAMS.

