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Two Crop Example

Item WHEAT CORN

Crop prices ($/bu) $2.98 $2.20

Variable cost ($/acre) $129.62 $109.98

Average yield (bu/acre) 69.0 bu 65.9 bu

Gross margin ($/acre) $76.00 $35.00

Observed allocation (acres)

(Total acres = 5)

3 ac 2 ac
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acres wheat3 + ε

$

Variable cost wheat = 

$129.62

Revenue wheat = 

$2.98 × 69    = 

$205.62

λland

PMP Calibration: Two-crop Example

0acres corn

λland=$35

2 + ε

Variable cost 

corn = $109.98

λw

Revenue corn = 

$2.20 × 65.9 = 

$144.98
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Mathematical Representation of Problem

Max ($2.98×69 – $129.62) W + ($2.20×65.9 – $109.98) C

s.t. (1) W + C ≤ 5

(2)    W ≤ 3.01

(3)    C ≤ 2.01

W, C ≥ 0

Solving using R gives: 

W = 3.01, C = 1.99; 

λland = 35, λ2 = [λw, λc] = [41 0]

Recall the gross margins:

Wheat = $76/ac

Corn = $35/ac

NOTE: If you do not have the ε=0.01 in constraints (2) and (3), then 
constraint (1) would be redundant!
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acres wheat3

$

AC=88.62+(½×27.333) xw

pw yw= $205.62

λland=35

PMP Calibrated Model

0acres corn

λland=$35

2

AC=$109.98

pC yC = 

$144.98

αw=88.62

MC = 88.62 + 27.333 xw

129.62

170.619

Notice the model is calibrated for one PMP activity but one LP activity 
is left, and the constraint on wheat still prevents an optimal 

Reduced cost = 

$41 = λ2w

Recall: subscript 1 

refers to land, and 2 to 

wheat and corn. So 

λ2C=$0



Maximize [($2.98×69) W + ($2.20×65.9) C

– (88.62 + ½×27.333W)W – 109.98 C] 

s.t. W + C ≤ 5

W, C ≥ 0

Calibrated model



Utility Functions and Modeling 
Agricultural Risk



Risk attitudes: Modeling and managing 

risk using utility functions

• Kenneth Arrow observed that:

(1) individuals display an aversion to risks

(2) risk aversion explains many observed 
phenomena

• Measures used by economists: 

 expected return (ER) 

 expected utility (EU)
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Marginal utility of income/wealth

• Linear marginal utility for income

 Risk Neutral

• Decreasing marginal utility for income

 Risk Averse

• Increasing marginal utility for income

 Risk Seeking
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Graphical Marginal Utility
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Risk Averse

Risk Seeking

Risk 

Neutral

Utility

Income



Complex Marginal Utility
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Utility

Income

Risk Seeking

for small 

sums

Risk Averse

for large sums



Risk Attitude

Certainty Equivalence (CE)

Let » denote ‘is preferred to’. 

If A1 » A2 and A2 » A3, then there exists p such that the 

decision maker (DM) is indifferent to receiving A2 with 

certainty and the lottery:

A2 ~ pA1 + (l –p)A3

(where ~ denotes indifference)

A2 is the CE of pA1 + (l –p)A3 
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We begin with formal definitions related to risk attitudes.



Risk neutral utility function
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x($)

u(x)

u(x)=kx

Straight line (quasi-concave, quasi-convex) utility 

function indicates risk neutral decision maker (DM).

u′(x) = k > 0, u′′(x) = 0



Risk-averse utility function

x
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π = risk premium = difference 

between expected monetary 

value and CE

π = 𝐸[𝑢 ҧ𝑥 ] − 𝑢(𝑥𝐶𝐸)

Strictly concave utility function indicates risk aversion.

u′(x) > 0, u′′(x) < 0 and      = ½ (x1 + x2)

E[u(x)] = p u(x1) + (1–p) u(x2) = CE

x2xCE xx1

= u(xCE)E[u(  )]

u(   )

EU

x($)

u(x)

π

u(x)

x

x

u(x2)

u(x1)



With risk aversion:

Utility increases with wealth but marginal utility 

(MU) falls, which implies the farmer prefers a 

certain return to an equal but uncertain one. 

u′(x) > 0, u′′(x) < 0

Risk taker has a strictly convex utility function:

u′(x) > 0, u′′(x) > 0
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Risk taker utility function
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Extreme risk lovers concentrate on upside risk and tend to 

be less concerned about downside risk. Risk premium is 

negative (–π) → DM is willing to pay to take on risk

x2xCExx1

EU

x($)

u(x)

–π

u(x)

E(x)=



Measures of Risk Aversion

• Unaffected by transformations in u

• Positive values imply risk aversion – the larger 

the value, the greater the risk aversion

• Negative values imply risk taking
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person #2 is everywhere 

more risk  averse than 

#1 – ‘risk aversion in 

the large’

One person has greater 

risk aversion than the 

other, but only ‘in the 

small’ as it depends on 

points x1 and x2

R#2(x)

R#1(x)

x1

RA

x2

RA

R#1(x)

R#2(x)

x x



μA = μB

σA = σB

m3
A < 0 < m3

B
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AB

d x (net income)

‘disaster’ level of income

μA = μB

Variance and mean rank A and B equally

Skewness ranks B over A (m3
A < m3

B  B is preferred)

Consider ‘chance of loss’ as a risk constraint: Prob(x ≤ d) ≤ α

Moments of a probability distribution

Kurtosis is the 4th moment; there also exist higher moments, 

although this depends on functional form of the probability 

density function.
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A B

d

Risk constraint: P(x ≤ d) ≤ α (d is disaster level)

In diagram: μA < μB and σA < σB

Chance of loss ranks A as more risky than B, while 

variance ranks B as more risky than A

x (net income)

Probability

μBμA



Power utility function: Decreasing absolute risk 

aversion but constant relative risk aversion
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Exponential utility function: Constant absolute risk 

aversion but increasing relative risk aversion
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Quadratic utility function: Increasing absolute and 

relative risk aversion
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Modeling risk attitude

• There are various ways to model risk attitudes

• Economists have come up with conditions that 

decision makers (DMs) should meet if their 

decisions are to be considered ‘rational’

 Expected utility maximization (EUM) is considered a 

benchmark in this regard, although many decision 

criteria fail to meet its requirements

 We adopt EUM as a benchmark for comparison purposes 
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Maximization of (1) expected (net) 
return (ER) or (2) expected utility (EU)

Question: Does a decision rule violate the 
expected utility maximization (EUM) 
hypothesis?

As we show in the next slides, expected revenue 
maximization satisfies the EUM hypothesis: 

→ For a linear utility function, EU leads to the 
same outcome as ER
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DECISION RULES



ER Maximization:
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DM generally maximizes expected utility rather than 

expected net return



pij = probability of event i occurring and you plant 
crop j

Event i might refer to a certain level of GDDs, 
precipitation, pests, weeds, low price at harvest, 
et cetera.
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EU maximization:
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Mean-Variance (EV) analysis

Background to mean-variance analysis:

A Taylor series expansion about mean μj gives:

E[uj] = f(μj,σ
2

j, m
3

j, m
4

j, …), 

where σ2
j is the variance, m3

j is skewness, m4
j is 

kurtosis and there exist higher moments of the 
probability distribution 
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EUM works only if expected utility has two moments –
only if (1) the utility function is quadratic, or (2) net returns 
are normally distributed. With only two moments:

E(uj) = f(μj, σ
2

j)

In contrast, if utility is linear there is only one moment:

E(uj) = f(μj)

Variance or standard deviation simply measures 
dispersion of net returns and is defined as:

Problem with V(x) is that deviations above the mean are 
penalized the same as those below the mean.
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Consider again the exponential utility function and normally 
distributed net returns. Does this satisfy EUM hypothesis?

u(x) = a – b e–λx b, λ > 0 (exponential)

If x ~ Normal, then max E[u(x)] is equivalent to maximizing

E[u(x)] = (1/λ) exp[λ(μ + ½ λσ2)] 

In essence, we can write the expected utility function as:

E[u(x)] = E(x) – ½ λ V(x) by transformation

Since there are only two moments in this expression, EV applies 
when maximizing an exponential utility function and assuming 
normality of x. 
A normal distribution is fully described by the first two moments: 
E(x) and V(x). 
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Recall, for exponential utility function:

RA = λ is the degree of risk aversion.

EV Decision Rule:

Max E[u(x)] = E(x) – ½ λ V(x),  λ given. 

It provides an ordering of alternatives consistent with 
the EUM hypothesis. 

If λ is unknown, the EV criterion can be used to order 
risky choices into efficient and inefficient sets.
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Two versions of EV Model:

 Freund

 Markowitz
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Freund Approach

Max E(R) – ½ λ V(R)

s.t. AX ≤ b (technical constraints)

x ≥ 0 (non-negativity)

NOTE: R is a function of the decision vector, X

λ is an Arrow-Pratt risk aversion coefficient 
discussed earlier. 

If λ is unknown, we could vary λ and solve the 
program for its various values. 
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E(R)

V(R)

u(R)

EV frontier

Indifference curve

EV is the expected return – variance 
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E(R)

V(R)

u(R) – risk averse

u(R) – risk 

lover

u(R) – risk neutral

EV frontier

Indifference curve



Further points

• Quadratic programming has sometimes been 
referred to as risk programming because EV 
analysis requires use of QP

• The Freund method of the previous diagram 
employs an elicited risk parameter to identify 
the optimal point on the EV frontier. 

• An alternative that does not elicit risk 
parameters is the Markowitz approach.
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Markowitz Approach to EV Analysis

Minimize V(R) 

s.t. E(R) ≥ k

A X ≤ b

X ≥ 0 

where k is varied in some iterative fashion to trace out the 
set of risk efficient (minimum variance) solutions – EV 
frontier (see diagram next slide)

Again X is the vector of activity levels or decision variables
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E(R)

V(R)

u(R)

Efficient EV boundary

Increasing utility
LP solution (no risk)

Set of all feasible plans

Q



Notes pertaining to previous diagram

• We do not know the DM’s utility function or 
tradeoff between expected returns and variance 
of returns – Markowitz’s approach cannot 
identify the optimal plan Q

• The LP solution is obtained by maximizing 
expected return E(R) because V(R) requires a 
quadratic, which would result in a nonlinear 
objective. So the LP solution can only give the 
highest expected outcome.
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Agricultural BRM in the U.S.

• Deep Loss Protection: Crop Insurance

– Federal Crop Insurance Act (1980)

• Mandated shift to private delivery

• Gov’t covered O&A costs plus underwriting risks; companies 
received 33% of premiums to cover O&A

• 30% subsidy rate on premiums

• Only 18% uptake

– Federal Crop Insurance Reform Act (1994)

• Premium subsidy of 40%; mandated expansion of crops covered

• lowered the A&O payment as a proportion of total premiums to 
31%, and eventually to 27%

• Included a catastrophic loading factor of 13.4% on premiums to 
ensure underwriting function



Period 

(FYs)

Total 

Payments

Low-price 

required

Yield or revenue decline required

Fixed payment Disaster Insurance

1961-1973 $1.7 100% 0% 0% 0%

1974-1995 $7.5 88% 0% 8% 4%

1996-2006 $14.5 49% 35% 7% 9%

2007-2012 $11.6 12% 39% 8% 41%

Spending by Type of U.S. Crop Program, 1961-2012, 
Annual Average based on Fiscal Year (FY)

Low price programs include non-recourse/marketing loans, deficiency payments/ 
CCP, PIK; fixed payments are programs that use a fixed unit rate multiplied by 
historical yields; disaster consists primarily of ad hoc disaster relief; and insurance 
refers to indemnities paid to farmers for losses minus premiums they paid
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Net indemnities from U.S. Crop Insurance Programs (left axis) 
and Ratio of Crop Insurance Payments to Total Insurance 

Premiums (right axis), 1989-2018
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Agricultural Risk Protection Act (2000)

• Increased premium subsidy so that it averaged 
62%

• increased A&O payments and extended the 
premium subsidy to take advantage of the Harvest 
Price Option (HPO), which uses the higher of the 
spring planting or harvest price. 
– HPO facilitated a massive shift out of yield insurance 

into revenue insurance

– Proportion of eligible acres in the U.S. covered by 
yield insurance fell from 93% in 1996 to only 15% in 
2013.



Commodity Reference 

price

Commodity Reference 

price

Wheat 5.50/bu Soybeans 8.40/bu

Corn 3.70/bu Other oilseeds 20.15/cwt

Grain sorghum 3.95/bu Peanuts 535/ton

Barley 4.95/bu Dry peas 11/cwt

Oats 2.40/bu Lentils 19.97/cwt

Long grain rice 14/cwt Small chickpeas 19.04/cwt

Medium grain 

rice

14/cwt Large chickpeas 21.54/cwt

2014 Farm Bill Reference Prices ($US) i.e. target price


