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Abstract 

In this paper, we consider uncertain preferences for non-market goods, but we move 
away from a probabilistic representation of uncertainty and propose the use of fuzzy 
contingent valuation (CV). We assume that a decision maker never fully knows her own 
utility function and we treat utility as a fuzzy number. The methodology is illustrated 
using data on forest valuation in Sweden. Fuzzy CV provides estimates of resource value 
in the form of a fuzzy number and includes estimates obtained using a standard 
probabilistic approach. 

Key Words:  Fuzzy set theory; fuzzy contingent valuation; forest preservation; 
preference uncertainty 
 
 
 
 
 
 
 
 
Acknowledgements: The authors wish to thank Chuan–Zhong Li and Leif Mattsson for 
graciously sharing their data. They also wish to thank the Sustainable Forest Management 
Network at the University of Alberta and the Agricultural Economics and Rural Policy 
Group at the University of Wageningen for research support.  



PREFERENCE UNCERTAINTY IN NON-MARKET VALUATION: 
A FUZZY APPROACH 

1. Introduction  

The contingent valuation (CV) survey method is a widely used technique for valuing 

non-market environmental amenities. In forestry, for example, both commercial timber 

values and non-timber values are important for guiding policy. Commercial timber values 

are straightforward to measure using market data and the travel cost method can be used 

to find forest recreation benefits, but CV is generally required to provide estimates of 

preservation value, which may be the most important non-timber value.  

Most CV surveys rely on a dichotomous choice question to elicit either 

willingness to pay (WTP) or compensation demanded. Calculation of the Hicksian 

compensating or equivalent welfare measure is based on the assumption that the survey 

respondent knows her utility function with certainty (Hanemann 1984; Hanemann and 

Kriström 1995). This assumption implies that the respondent knows with certainty how 

much she would be willing to pay for the good in question.  

The assumption of preference certainty is a strong one because CV seeks to elicit 

values for environmental resources from respondents who may lack the cognitive ability 

to make such assessments (Gregory et al. 1993; Sagoff 1994; Knetsch 2000). While 

Hanemann and Kriström (1995) provide an explanation of what preference uncertainty 

means in the context of the CV method, several authors have adopted varying but ad hoc 

approaches for dealing with preference uncertainty in non-market valuation (Ready et al. 

1995; Loomis and Ekstrand 1998). These approaches rely on probabilistic interpretations 

of uncertainty. Our contention is that the apparent precision of standard WTP estimates 
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(even as a mean value with confidence interval) masks the underlying vagueness of 

preferences and may lead to biased outcomes (Barrett and Pattanaik 1989).  

Fuzzy set theory (Zadeh 1965) provides a useful alternative for interpreting 

preference uncertainty and analyzing willingness to pay responses in the CV framework. 

Fuzzy logic addresses both imprecision about what is to be valued (Li 1989; Treadwell 

1995) and uncertainty about values that are actually measured (Cox 1994). In this paper, 

we focus on the most often used economic application of fuzzy set theory––modelling of 

choices based on vague preferences (Basu 1984; Barrett and Pattanaik 1989; Barrett et al. 

1990; Banerjee 1995). We distinguish between three types of uncertainty that could cause 

ill-defined preferences for environmental goods.  

First, people may not be well acquainted with the alternatives they are being 

asked to value, and cannot easily express a preference for different combinations of 

income and the environmental amenity. For example, a survey of Scottish citizens 

revealed that over 70% of the respondents were completely unfamiliar with the meaning 

of biodiversity (Hanley et al. 1997). Similarly, some respondents are likely not familiar 

with ‘obscure’ endangered species such as the striped shiner or the squawfish, yet are 

asked to value their survival (Bulte and van Kooten 1999). One straightforward means for 

mitigating this type of uncertainty is to provide more information or detail about the 

amenity to be valued.  

Second, respondents may be truly uncertain about their preferences because they 

have never previously given such tradeoffs much thought. In a one-shot CV experiment, 

a respondent’s stated WTP may be biased. One approach in this case is to use focus 

groups that enable stakeholders (as opposed to a truly representative group) to construct a 
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preference function (McDaniels 1996). Other approaches have also been proposed to 

address this type of uncertainty, all relying on a probabilistic interpretation of uncertainty 

(Kriström 1997; Loomis and Edstrand 1998).  

Third, and crucial for the current paper, it may be the case that respondents never 

fully know their preferences. The concern here is with a respondent’s cognitive inability 

to rank commodities with diverse properties, even if the commodities themselves are well 

defined and their attributes completely known by the respondent (Fedrizzi 1987; Irwin et 

al. 1993). So far, this type of uncertainty has been ignored in much of the economic 

valuation literature, and certainly in the valuation of non-market goods. 

There is a fundamental and philosophical difference between the second and third 

approaches to uncertain preferences. The second approach assumes that respondents learn 

about their preferences over time (Hoehn and Randall 1987) and eventually ‘know’ their 

true utility function. In other words, respondents are uncertain about the location of their 

true indifference curve(s), but a time series of CV surveying would measure a shifting 

‘perceived’ indifference curve that gradually approaches the true one. The third approach, 

in contrast, treats the utility function as a useful analytical construct, but acknowledges 

that certain trade-offs are inherently difficult, if not impossible, to make. How does one 

value ‘employment’ versus ‘endangered species conservation,’ or ‘children’s health’ 

versus ‘poverty alleviation’? While respondents will certainly have some preference over 

such choices, valuation at the margin is extremely difficult and it is obvious that some 

trade-offs cannot be represented by a true and unique indifference curve. In this paper, we 

replace this notion with that of a fuzzy set. Li and Mattsson (1995) were among the first 

to incorporate preference uncertainty (of the second type) into a discrete choice model of 
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WTP. They assumed that each individual has a true value for the amenity in question, but 

that the respondent does not yet know that value with certainty. They then develop a CV 

survey that uses a post–decisional confidence measure on each respondent’s ‘yes/no’ 

answer about willingness to pay a given ‘bid’ for the amenity. They integrate this 

confidence measure into the standard dichotomous-choice WTP model. Li and Mattsson 

model the respondent’s ‘yes/no’ choice as a realization of some probabilistic mechanism 

where the post-decisional confidence is interpreted as a subjective probability that the 

change in the respondent’s utility is positive (for a ‘yes’ answer) or negative (for a ‘no’ 

answer). In contrast to this approach, we assume that an individual does not have an exact 

value for amenity and will therefore never know it with certainty. We assume only that a 

respondent knows the level above which she certainly rejects to pay the bid amount for 

the amenity and the level below which she certainly accepts the bid. In between these 

levels, the preferences of the respondent are vague. In what follows, we use Li and 

Mattsson’s data on Swedish forest preservation to illustrate how preference uncertainty of 

the third kind can be addressed using fuzzy set theory.  

The paper is organized as follows. In section 2, we present a background to fuzzy 

logic, focusing on means for comparing fuzzy numbers. Then, in section 3, we briefly 

review the traditional contingent valuation method indicating, in section 4, how our fuzzy 

approach modifies it. We then, in section 5, apply our approach to a case study of forest 

preservation in Sweden, comparing the results with those using traditional valuation 

methods. Our conclusions follow.  
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2. Background to Fuzzy Logic 

Multivalued logic was first introduced in the 1920s to address indeterminacy in quantum 

theory. This was done by permitting a third, or intermediate, possibility in the traditional 

bivalent logical framework. The Polish mathematician Jan Lukasiewicz introduced three–

valued logic and then extended the range of truth values from {0, 1/2, 1} to all rational 

numbers in [0, 1] and finally to all numbers in [0, 1]. In the late 1930s, quantum 

philosopher Max Black used the term ‘vagueness’ to refer to Lukasiewicz’ uncertainty 

and introduced the idea of a membership function (Kosko 1992, pp.5-6). Subsequently, 

Lofti Zadeh (1965) introduced the term fuzzy set and the fuzzy logic it supports. 

Zadeh’s concern was with the ambiguity and vagueness of natural language, and 

the attendant inability to convey crisp information linguistically. The subjective 

perception of heat by one person is not necessarily congruent with the perception of heat 

by another person. There is no absolute temperature at which a thing may be said to 

belong in the set of things that are ‘hot,’ or at which it has ceased to be merely ‘warm.’ 

Subjective interpretations of the term allow for an overlap of temperature ranges. Thus, 

an object is said to be ‘warm’ by some while it is judged ‘hot’ by others. In essence, it is 

accorded partial membership in both of the sets—it displays some of the requirements for 

‘hot’ while retaining some of the requirements for being ‘warm.’ It is this concept of 

partial membership that is central to the theory of fuzzy sets. In what follows, we apply 

the same reasoning to analyze vague preferences rather than vague language (see also 

Ells et al. 1997). Thus, a bid may be fully acceptable or fully unacceptable to a 

respondent (i.e., full membership in the set of acceptable and unacceptable bids, 

respectively), but it may also be a bit of both. 
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Consider the idea of partial membership more formally. An element x of the 

universal set X is assigned to an ordinary (crisp) set A via the characteristic function µA, 

such that: 

µA(x) = 1   if x∈A. 

(1) 

  µA(x) = 0   otherwise. 
 
The element has either full membership (µA(x)=1) or no membership (µA(x)=0) in the set 

A. A fuzzy set A~  is also described by a characteristic function, the difference being that 

the function now maps over the closed interval [0,1]. Thus, an element may be assigned a 

value that lies between 0 and 1 and is representative of the degree of membership that x 

has in the fuzzy set A~ .1 A membership function describes the relative grade or degree of 

membership, with the membership function viewed as a representation of a fuzzy number 

(Klir and Folger 1988, p.17).  

Zadeh (1965) originally proposed operations for fuzzy sets, defining the 

intersection of two fuzzy sets A~  and B~  as: 

(2) Xxxxx BABA ∈∀=
∩

)},(),(min{)( ~~~~ µµµ , 

and union as: 

(3) Xxxxx BABA ∈∀=
∪

)},(),(max{)( ~~~~ µµµ . 

Intersection A~ ∩  is the largest fuzzy set that is contained in both B~ A~  and , and union B~

A~ ∪  is the smallest fuzzy set containing both B~ A~  and . Both union and intersection of 

fuzzy sets are commutative, associate and distributive as for crisp (ordinary) sets. Further, 

B~

                                                           
1By convention, membership functions are normalized so that there exists at least one 
x∈X such that A~µ (x) = 1, and 0 ≤ A~µ (x) ≤ 1 ∀ x∈X. 
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the complement A~ c of fuzzy set A~  is defined as: 

A~

µ

(4) µ (x) = 1 – µ (x). CA~ A~

Fuzzy logic deviates from crisp or bivalent logic because, if we do not know A~  

with certainty, its complement C is also not known with certainty. Thus, A~ C ∩ A~  does 

not necessarily produce the empty set as is the case for crisp sets (where AC ∩ A = φ). 

Fuzzy logic violates the “law of noncontradiction” and the “law of the excluded middle,” 

because the union of a fuzzy set and its complement does not equal the universe of 

discourse (the universal set).  

Finally, we define the α-level set, Aα, as that subset of values of A~  for which the 

degree of membership exceeds the level α 

(5) Aα = { x | A~ (x) ≥α}, α∈(0,1]. 

The result Aα is itself crisp.  

Fuzzy numbers and fuzzy arithmetic 

In this paper, we express uncertainty in terms of fuzzy numbers. A fuzzy number F~  is a 

fuzzy set defined on the real line with the membership function µ (x) ∈ [0,1]. Fuzzy sets 

can be used to express concepts of approximate functions and numbers (e.g., ‘closeness’ 

or ‘nearness’ to a function or number, as well as linguistic concepts like ‘large’ or 

‘small’). Both interpretations are useful in the context of CV, but here we focus on 

approximation. As an example, a non-symmetric, triangular fuzzy number 

F~

F~ =(f, d1, d2) 

with center f, left spread d1 and right spread d2 is presented in Figure 1. It has the 

membership function:  
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   1 – 
1d

xf − , f – d1 ≤ x ≤ f 

(6) F~µ (x) = 1 – 
2d

fx − , f ≤ x ≤ f+d2 

   0,   otherwise. 
 

<INSERT FIGURE 1 ABOUT HERE> 

 

Alternative specifications of membership functions are possible. If the left spread 

approaches infinity, the resulting fuzzy number becomes M~ =(f, ∞, d2), which has the 

membership function:  

  1,  x ≤ f  

(7) )(~ xMµ  = 1 – 
2d
fx − , f ≤ x ≤ f+d2 

   0,    otherwise 
 
Such a number may describe respondents’ WTPs for a certain environmental amenity; it 

may describe the fuzzy set of ‘bids that are acceptable to respondents.’ Respondents are 

always willing to pay an amount less than f (with membership in fuzzy WTP equal to 

one), but membership decreases as the bid increases beyond f and eventually falls to zero.  

If the right spread of a fuzzy number approaches infinity, or N~ =(g, d1, ∞), it has 

membership function:  

   1,  x ≥ g 

(8) N~µ (x) = 1 – 
1d
xg − , g– d1 ≤ x ≤ g 

   0,   otherwise.  
 
Numbers of this type could represent respondents’ willingness not to pay (WNTP) for an 

environmental amenity. Thus, it may be used to define the fuzzy set ‘bids that are 

unacceptable to respondents.’ Further, membership functions need not be (piecewise) 
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linear, but can be highly nonlinear (see below). 

Operations on fuzzy numbers are the extension of operations on real numbers 

(Kauffman and Gupta 1985; Kosko 1992; Klir and Yuan 1995). For fuzzy sets F~  and G~ , 

x, y, z∈ℜ, addition and subtraction can be defined as: 

(9) )](),(min[sup)( ~~~~ yxz GF
yxz

GF µµµ
+=

+
=   

(10) )](),(min[sup)( ~~~~ yxz GF
yxz

GF µµµ
−=

−
=  

Comparing fuzzy numbers 

For any two crisp numbers F and G, only one of the relations F<G, F>G or F=G holds. 

For two fuzzy numbers F~  and G~ , two ordering relations can hold simultaneously. The 

order of fuzzy numbers cannot be established in an absolute sense, but only to a degree. 

Comparison of fuzzy numbers has received significant attention in connection with 

special types of decision problems (see Chen and Hwang 1992; Munda et al.1995). The 

ordering of fuzzy numbers represents a relation of partial order and thus involves the 

notion of preference rather than ‘greater than.’ Three classes of methods for ordering 

fuzzy numbers have been proposed. First are the methods that extend preference between 

crisp numbers to fuzzy numbers. The second includes approaches that rely on intuition to 

determine which of two fuzzy numbers is preferred over the other. While the first 

addresses the order of fuzzy numbers along the horizontal axis (the values of fuzzy 

numbers), the second relies on membership values (the vertical component of a fuzzy 

number). Both approaches have disadvantages since they limit comparison to only one 

aspect (component) of the fuzzy number. Different approaches in ordering fuzzy numbers 
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are illustrated using the two fuzzy numbers in Figure 2. 

 

 <INSERT FIGURE 2 ABOUT HERE> 

 

In Figure 2, the order of fuzzy numbers F~  and G~  along the horizontal axis is 

based on the partial order of the closed intervals (Klir and Yuan 1995, p.114). Let f~  

denote the fuzzy relation ‘greater than or equal to.’ Then  

(11)  F~ f~ G~  if and only if [f1, f2] ≥ [g1,g2] if and only if f1 ≥ g1 and f2 ≥ g2 .  

 If membership values are taken into account, the partial order of fuzzy numbers 

can be defined in terms of their α–cuts (vertical component). For fuzzy numbers F~ and 

G~ , α–cuts Fα and Gα are closed intervals. The fuzzy relation F~ f~ G~  is then defined as 

(Klir and Yuan 1995, p.114): 

(12)  F~ f~ G~   if and only if Fα ≥Gα  for all α∈(0,1]. 

When this definition is applied to the fuzzy numbers in Figure 2, different orderings of 

F~  and  are obtained at various α-levels. First, G~ F~ f~ G~  for α∈(0, α1]. For α∈(α1,α2), 

the fuzzy numbers F~  and  are not comparable. Finally, G~ F~ p~ G~  for α∈(α2, 1].  

Inconsistencies in ordering fuzzy numbers for different approaches and even for 

the same definition motivate the third approach. In situations of overlap (as in Figure 2), 

methods based on area measurement are generally able to order fuzzy numbers where 

other methods fail to establish an order. Yager (1981) was among the first to compare 

fuzzy numbers in terms of area measurement by introducing a ranking index for a fuzzy 

number. Several criteria for choosing between two fuzzy numbers based on the Hamming 
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distance or its variations have been proposed (Kauffman and Gupta 1985; Saade and 

Schwarzlander 1992).  

Ordering of fuzzy numbers usually establishes a binary relation between fuzzy 

numbers. Based on the area measurement approach, we introduce the notion of the 

strength (degree) of the relation between two fuzzy numbers. We define the fuzzy 

relation between two fuzzy numbers in terms of the areas under the membership 

functions, S1, S2, S3, S4 and S5 in Figure 2. Let s∈[0,1] denote the normalized strength of 

the fuzzy relations ‘greater than or equal to’ ( ) and ‘less than or equal to’ ( ). The 

strength of 

f~ p~

F~ p~ G~  is represented by the sum of areas S2, S3 and S5. Similarly, the 

strength of F~ f~ G~  is defined by S1+S4+S5. The strength of a relation between two fuzzy 

numbers is normalized by dividing by S=S1+S2+S3+S4+S5, or the total area under the 

membership curves for F~  and .  G~

Let F be the set of fuzzy numbers. We can define fuzzy orderings as follows: 

 

Definition 1. (Fuzzy less than or equal to). For given F~ , ∈F, 

s(

G~

F~ p~ G~ )=(S2+S3+S5)/S.  

 

Definition 2. (Fuzzy greater than or equal). For given F~ , ∈F, 

s(

G~

F~ f~ G~ )=(S1+S4+S5)/S.  

 

Notice that s( F~ p~ G~ )+s( F~ f~ G~ )≥1. This results follows because fuzzy logic violates the 

“law of the excluded middle” (Barrett and Pattanaik 1989). 
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The application of Definitions 1 and 2 for comparing two fuzzy numbers, F~ and 

, is illustrated in Figure 3. In panel 3(a), s(G~ F~ p~ G~ )=1 since (S2+S3+S5)/S=1. Likewise, 

s( F~ f~ G~ )=0 as S1+S4+S5=0. As G  approaches ~ F~ , the area of overlap between the 

membership functions increases. Then, s( F~ p~ G~ ) remains 1 and s( F~ f~ G~ ) increases. As 

long as S1 and S4 are zero, S=S2+S3+S5, s( F~ p~ G~ )=1 and s( F~ f~ G~ )=S5/S (Figure 3b). 

Panel 3(c) illustrates a case of non-obvious relations between two fuzzy numbers. Both 

relations  and  hold simultaneously to some degree.  p~ f~

 

<INSERT FIGURE 3 ABOUT HERE> 

 

In Figure 3, situations (a) and (b) differ only by the overlap area between the 

membership functions. To distinguish between these cases, we introduce the relation 

‘fuzzy overlap’ (denoted by ~). The normalized strength of s( F~ ~ ) is defined as:  G~

 
Definition 3. (Fuzzy overlap ~). From Figure 3, for given F~ , ∈F, 

s(

G~

F~ ~G )=S5/S.  ~

 

Fuzzy Preference  

If F is a set of fuzzy numbers, a fuzzy preference relation is a function ρ:F ×F→[0,1]. 

We interpret ρ( F~ , ) as the degree to which G~ F~  is preferred to  or the degree to 

which ‘

G~

F~  is at least as good as ’ (Barrett and Pattanaik 1989). G~
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Definition 4. (Fuzzy preference) For given F~ , ∈F, G~ F~ is preferred to G  if and only 

if s(

~

F~ f~ G~ )≥s( F~ p~ G~ ). Then, ρ( F~ , )=s(G~ F~ f~ G~ ).  

 

It may be easily proved that a fuzzy preference relation between F~ and  (Definition 4) 

is reflexive, connected and transitive in terms of the following axioms: 

G~

 

Reflexivity.    ρ( F~ , F~ ) =1, ∀ F~ ∈F . 

Connectedness. ρ( F~ , )+ρ(G ,G~ ~ F~ )≥1 ∀ F~ , G ∈F . ~

Max-min Transitivity. ρ( F~ , H~ )≥min[ρ( F~ ,G ), ρ( ,~ G~ H~ )] ∀ F~ , G ,~ H~ ∈F . 

3. Traditional Random Utility Maximization Model  

The standard approach to welfare estimation using CV assumes that the individual knows 

her utility function with certainty, but those components are unobservable to the 

investigator. Since people may have trouble converting notions about environmental 

commodities such as nature preservation into monetary terms, a dichotomous choice 

(DC) format is often favoured (see Hanemann and Kriström 1995). With DC, the 

respondent is asked to choose between two options: (a) income and the level of the 

environmental amenity remain unchanged, or (b) the availability of the environmental 

amenity is increased by some amount in exchange for a reduction in income of W. The 

respondent compares utility under the status quo (a) with that under the proposed change 

(b). A random utility maximization model (RUM) is used to analyze dichotomous choice 

responses (Hanemann 1984), but it is unclear whether RUM addresses uncertainty related 
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to observation or actual preference uncertainty, or both.  

Formally, let u(j, m; r) be a crisp utility function where j∈{0,1} is an indicator 

variable that takes on the value 1 if the individual accepts the opportunity to pay the bid 

amount W for the amenity and 0 if not, m is income, and r is a vector of the respondent 

attributes. If we assume that the respondent knows her utility function with certainty, then 

she should be willing to pay amount W as long as 

(13) u(1, m–W; r) ≥ u(0, m; r). 

In this model, if utility is crisp, there exists a maximum willingness to pay, M, such that 

u(1, m–M; r)–u(0, m; r)=0. M is the reduction in income that would make the respondent 

indifferent between the status quo (j=0) and the contingency (j=1); it is the Hicksian 

compensating surplus. 

Consider the simplest case where the utility function has a linear form:  

(14) u(j, m; r) = αj + δm + εj with δ>0, j = 0,1, 

where αj and δ are parameters of the utility function and εj is an error term associated 

with observed uncertainty of the respondent’s utility function. The change in utility 

between the two states is then given as:  

(15) ∆v = [α1+δ(m–W)+ε1] – [α0+δm+ε0] = (α1–α0)– δW+(ε1–ε0) = α–δW+ε, 

where α≡α1–α0 and ε≡ε1–ε0 is iid because εj (j=0,1) are each iid (Hanemann 1984). The 

respondent accepts the bid if ∆v>ε0–ε1.  

 In the classical CV model, ∆v is assumed to be a random variable. If both the 

analyst’s uncertainty about the respondent’s utility and the respondent’s uncertainty about 

her preferences are assumed to be random, this implies that acquiring additional 
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information can reduce both uncertainties.2 In a case of perfect information then, 

uncertainty would be zero. The fuzzy approach to contingent valuation described below 

is different because it retains uncertainty even when information is perfect. Thus, the 

fuzzy approach should not be regarded as competing with, but rather as complementing, 

the standard approaches to preference uncertainty within a CV framework.  

4. Fuzzy Utility Functions and Fuzzy Contingent Valuation 

Our concern is with people who may have conflicting impulses about which goods they 

prefer; they may think that one good is better than another in some respect but worse in 

others. We consider respondents’ cognitive (in)ability to rank commodities with diverse 

properties, even if the commodities themselves are well defined or crisp, and information 

is perfect. An assumption of the DC approach in the CV context is that each respondent is 

able to determine which option is preferred, but there are situations when it may be 

difficult or impossible for the respondent to determine with certainty the preferred option.  

 Authors who studied preference uncertainty in the CV framework (Ready et al. 

1995; Li and Mattsson 1995; Loomis and Ekstrand 1998) interpret respondents’ difficulty 

in making a choice as uncertainty over the location of the indifference curve. Most CV 

studies assume that the respondent resolves such uncertainty through additional 

information about the amenity being valued. While additional information and 

knowledge of the amenity in question may narrow the preference uncertainty region, 

preference uncertainty remains as a result of strong conflicts between the objectives 

                                                           
2This assumes that all respondents have the same utility function, a crucial but generally 
unstated assumption in the random utility maximization model.  
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(Ready et al. 1995). In such situations, a respondent typically adopts one of a variety of 

decision rules in order to provide a crisp answer to the DC question. Loomis and 

Ekstrand (1998) provide a review and comparison of alternative approaches to 

incorporating preference uncertainty into dichotomous choice CV. The methods range 

from coding uncertain ‘yes’ responses as ‘no’ (or vice versa) to incorporating a measure 

of uncertainty of a DC answer directly into the likelihood function. Despite differences in 

the approaches, they are all based on Hanemann’s formulation of the utility difference 

model. The underlying assumption of this model and its modifications is that uncertainty 

in the model (respondent’s and/or observer’s) can and should be modelled 

probabilistically.  

Unlike these approaches, we assume that a respondent’s utility is vague and can 

be represented by a fuzzy number . Then, the indifference curve is fuzzy too. Graphical 

illustration of the DC model when utility is fuzzy is given in Figure 4.3 Income and the 

amount of the environmental amenity are assumed to be well defined or crisp. 

Representative fuzzy indifference curves are provided in Figure 4 for two individuals (A 

and B) faced with the opportunity of paying an amount W to increase the availability of 

the environmental amenity from E0 to E1, or remaining at the status quo level K. 

Combinations of income and the environmental amenity located on the dark lines have 

memberships equal to 1.0 in the fuzzy utility sets, u (A) and (B). Points located off the 

dark lines but in the respective shaded areas have a degree of membership in the fuzzy 

indifference level that is less than 1.0 but greater than 0. The outside boundaries of the 

indifference curve are given by dashed lines. For the respondent with fuzzy indifference 

u~

~ u~

                                                           
 3For convenience, the convex indifference curves are drawn as straight lines. See 
Hanemann and Kriström (1995) for a crisp representation.  
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curve (A), the new consumption set represented by β has a membership in u (A) of 1.0. 

For the individual with fuzzy indifference curve u (B), µu (B)(γ)=0.60 say, while 

µ (B)(β) = 0 and µ (B)(π)=1.  

u~ ~

~ ~

j

u~ u~

α~

jα~ ,mj

)2
jd

 

<INSERT FIGURE 4 ABOUT HERE> 

 

When a respondent’s utility is crisp (i.e., only the dark line), then W will be 

accepted (‘yes’ answer) when the indifference curve at E1 is below the line m–W. This is 

the case for respondent B, but not for respondent A. Figure 4 illustrates the potential 

problems in answering a DC question regarding a given bid W when a respondent’s 

utility is fuzzy. Respondent A will always reject the opportunity to pay W for more of the 

environmental amenity. Respondent B’s fuzzy indifference curve intersects the 

environmental amenity level E1 at an interval that contains the m–W value. Consequently, 

some points of the intersecting interval are below and others are above the line m–W. 

Answers to the DC question are therefore subject to a decision criterion.  

Now, let the fuzzy utility function be linear: u (j,m;r)=~ +δm, δ>0. We assume 

that coefficients , j=0,1, of the fuzzy utility function );(~ ru  are expressed as 

nonsymmetric triangular fuzzy numbers ,,(~
1
j

jj da=α  with the membership function: 
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=)(~ x
jαµ j

j
jj

j axda
d

xa
≤≤−

−
− 1

1

,1   

(16) =)(~ x
jαµ  j

jjj
j daxa

d
ax

2
2

, +≤<
−

−1  

=)(~ x
jαµ  0,   otherwise. 

Then, 01
~~);,0(~);,1(~~ αδα −−=−−=∆ WrmurWmuv .  

A response to the DC question depends on the preference relation ρ( 1
~α –δW, 0

~α ) 

between 1
~α –δW and 0

~α . Following Definition 4 (fuzzy preference), a 1
~α –δW for a bid W 

is preferred to 0
~α  if and only if s( 1

~α –δWf~ 0
~α )≥s( 1

~α –δW p~ 0
~α ). The degree to which 

1
~α –δW is preferred to 0

~α  is ρ( 1
~α –δW, 0

~α )=s( 1
~α –δWf~ 0

~α ).  

Choice Rules  

The requirement of the DC method is that a respondent provides a clear choice between 

the ‘yes’ or ‘no’ answer, even when her preferences are uncertain. Our analysis about 

how this choice is made is motivated by the explicit treatment of a respondent’s 

preference uncertainty as proposed by Li and Mattsson (1995). Following a standard 

contingent valuation question regarding WTP for forest preservation, Li and Mattsson 

elicited post-decisional confidence by asking, “How certain were you of your answer to 

the previous [dichotomous choice] question?” (p.264). The authors interpreted responses 

as the subjective probabilities that the individual’s true valuation is greater (for a ‘yes’ 

answer) or less (for a ‘no’ answer) than the bid. Li and Mattsson also assume that an 

individual may give different ‘yes/no’ answers to the same bid because of the 

randomness of her preferences.  
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The format of the confidence question posed by Li and Mattsson allows for different 

interpretations. It is known that people have problems interpreting measures of 

uncertainty even when these are defined as probabilities. We assume that an individual 

always provides the same ‘yes/no’ answer whenever the same bid is offered. Along with 

the ‘yes/no’ answer, she provides a number between 0 and 1 that we interpret as a 

measure of her comfort, enthusiasm or inclination toward the given answer, or the degree 

of membership of the bid in the fuzzy sets of ‘acceptable bids’ and ‘unacceptable bids,’ 

respectively. As we have seen in section 3, classical CV requires only one value, 

maximum willingness to pay (denoted M), to define a crisp choice rule: Accept a bid W 

(‘yes’ answer) if W≤M; do not accept a bid W (‘no’ answer) if W>M. The corresponding 

crisp choice function is Cyes(W) = 1, if W≤M and Cyes(W) = 0, otherwise.  

We assume that each individual has a fuzzy choice function. If a respondent 

accepts a bid W (‘yes’ answer with a post-decisional confidence of 0<Cyes(W) <1), there 

may exist a value greater than W that a respondent would be willing to pay, but its 

membership is lower than Cyes(W). Similarly, if the post-decisional confidence associated 

with a ‘no’ answer to bid W is 0<Cno(W)<1, there may be a value lower than W that a 

respondent is not willing to pay with positive degree of membership. However, any lower 

value than W  would have a membership lower than elicited Cno(W). 

We now formulate the choice criteria using the notion of fuzzy preference relation 

introduced above. Criteria for the acceptance (‘yes’ answer) and rejection (‘no’ answer) 

of a bid W are the following:  
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Definition 5. (Acceptance rule) A respondent will accept a bid W if ρ( 1
~α –

δW, 0
~α )≥ρ( 0

~α , 1
~α –δW). Then, the ‘comfort’ in accepting the bid or the 

membership of ‘yes’, Cyes(W) = ρ( 1
~α –δW, 0

~α )–s( 1
~α –δW~ 0

~α ).  

Definition 6. (Rejection rule) An individual will reject a bid W if ρ( 0
~α , 1

~α –

δW)>ρ( 1
~α –δW, 0

~α ). In this case, the ‘comfort’ in rejecting the bid or 

the membership of ‘no’, Cno(W)=ρ( 0
~α , 1

~α –δW)–s( 0
~α ~ 1

~α –δW).  

 

These choice rules should be able to distinguish between a choice with certainty, when 

comfort level equals 1 (Figure 3a), and one where the comfort level is less than 1 (Figure 

3b). The comfort levels Cyes and Cno are therefore adjusted by the normalized area of 

overlap between 0
~α  and 1

~α –δW (definition 3). Definitions 5 and 6 characterize a 

respondent’s fuzzy choice function C(S )(W), where S is a set of possible answers to 

the given bid W. The values of C(S )(W) are between 0 and 1, thus representing 

membership in a choice function. Banerjee (1995) discusses properties and 

characterization of rational choice based on such a function.  

 A Cyes(W) may be interpreted as a membership function for fuzzy WTP, and 

Cno(W) a membership function for fuzzy WNTP. Define fuzzy sets M~  and N~  such that 

fuzzy number M~  is the maximum WTP for an increase in the environmental amenity, 

and N~  is the minimum WNTP for preservation of the amenity. For very high or very low 

bids, the respondent has little (if any) uncertainty about the response. She rejects or 

accepts bids with a high level of comfort and consistency.  

The membership of WTP equals 1 for low bid values (the respondent is likely 
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willing to “pay” negative amounts,4 and may also be willing to pay small positive 

amounts) and then declines as the bid increases above w1 (Figure 5). A bid w0 is the 

maximum value that a respondent would be WTP with a membership µ(w0). The same w0 

is the minimum bid that a respondent would not be willing to pay at the comfort level 

µ(w0). As the bid amount W increases, membership in WNTP increases (as bids increase 

they become less acceptable for the respondent) and reaches 1 at w2 (Figure 5).  

 

<INSERT FIGURE 5 ABOUT HERE> 

 

Three components of the fuzzy numbers M~  and N~  correspond to different 

aspects of a respondent’s preference uncertainty in the non-market valuation context. 

First, the shape of the membership curves of M~  and N~  may depend on the respondent’s 

attitude toward risk, thus explaining the asymmetrical feature of the two curves. Second, 

µ(w0) reflects the strength of a respondent’s preference uncertainty regarding valuation of 

the environmental amenity. A higher µ(w0) corresponds to weaker preference uncertainty. 

Finally, the width of the interval [w1,w2] relates to the range of the bid values over which 

a respondent’s preferences are uncertain.  

For a bid w0, a respondent is indifferent (at the comfort level µ(w0)) between 

accepting or rejecting the bid. When a respondent is certain of her preferences, then 

µ(w0)=1 and w0=w1=w2. Thus, our approach to CV with vague preferences includes 

preference certainty as a special case. Another extreme value, µ(w0)=0, corresponds to 

                                                           
4 Kriström (1997) and Loomis and Ekstrand (1998) also permit negative WTP values.  
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the situation of strongest preference uncertainty. In this case, there is no single bid in the 

range of non-intersection that could be reported as a maximum value (with reasonable 

comfort) that a respondent is WTP. This occurs in Figure 5 if M~  and N~  do not intersect, 

in which case the degree of uncertainty is so great as to prevent a decision. This 

represents the situation where respondents register protest votes by not answering the 

valuation question. 

Despite similarities to the classical method, our approach to CV with vague 

preferences is peculiar. Classical CV requires one value (maximum WTP, denoted M) to 

define a crisp choice function. The choice rule is far more complex when vague 

preferences are considered and more information is required. This should not be treated 

as a disadvantage of the proposed methodology, but rather as a way of incorporating real-

life complexity into traditional models of CV. 

The objective now is to determine the membership function of WTP:  

 µWTP (W)= 1,   W<w1 
(17) 

µWTP (W)= Cyes(W),  w1 ≤W≤w0. 
 

Here, Cyes(W) is monotonically decreasing for W∈[w1, w0]. Likewise, the degree of 

membership in WNTP is 

µWNTP(W) = Cno(W),  w0 ≤W≤w2 
(18) 

µWNTP(W) = 1,   W>w2, 
 

where Cno(W) is a monotonically increasing function for W∈[w0,w2] (see Figure 5). Once 

the membership functions for WTP and WNTP are determined, the point of their 

intersection (w0,µ(w0)) will be used to formulate the operational choice rule:  
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Fuzzy choice rule.  

(a) Accept the bid W≤w0 with comfort Cyes(W)=µ(W)≥µ(w0), where µ(W)=µWTP(W).  

(b) Reject the bid W>w0 with comfort Cno(W)=µ(W)≥µ(w0), where µ(W)=µWNTP(W).  

 

For low µ(w0) value, the fuzzy choice rule is of no practical value because of the low 

comfort with respect to the chosen ‘yes’ or ‘no’ answer. To overcome this problem, one 

may wish to consider only answers to the DC question at the (arbitrary) comfort level 

µD>µ(w0). Denote by w3 and w4 the maximum WTP and minimum WNTP, respectively, 

with the µD comfort level (Figure 6). In this case, a respondent would be indifferent at the 

µD level between ‘yes’ and ‘no’ answers to a DC question for all bids W∈[w3, w4].  

 

<INSERT FIGURE 6 ABOUT HERE> 

5. Case Study: Valuing Forest Preservation in Sweden 

In this section, fuzzy WTP and WNTP numbers are constructed using the results of a 

contingent valuation survey of Swedish residents undertaken during the summer of 1992 

(Li and Mattsson 1995). The survey asked respondents whether they would be willing to 

pay a given amount “… to continue to visit, use, and experience the forest environment 

as [they] usually do.” Bid amounts took one the following values: 50, 100, 200, 400, 700, 

1000, 2000, 4000, 8000 and 16000 SEK. Since Li and Mattsson were interested in 

preference uncertainty, they used a post-decisional confidence measure based on a 

follow-up question that asked respondents how certain they were about their ‘yes/no’ 

answer. A graphical scale with 5% intervals was used. The researchers also collected data 
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on household income, the respondent’s age, gender, education level, and average annual 

number of forest visits. The sample consisted of 800 individuals living in Vasterbotten 

county in Sweden. Although 436 questionnaires were returned, only 389 survey 

responses were usable and provided to us. 

We first assume that an individual’s response to the question of how certain she is 

about her answer to the dichotomous choice question is a measure of the uncertainty of 

WTP and WNTP in the case of ‘yes’ and ‘no’ responses, respectively. If a respondent 

answers ‘yes’ with a comfort Cyes(W) to the dichotomous choice question at the bid value 

W, it is assumed she would then be willing to pay any lesser amount than W with a 

comfort at least as high as Cyes(W). It is also assumed that a maximum WTP value greater 

than W may exist, but with a comfort level not greater than Cyes(W). Similar logic holds 

for ‘no’ answers and minimum WNTP. 

Using the same criterion as Li and Mattsson to eliminate observations,5 the 

sample data were divided into two groups according to the respondents’ answers to the 

dichotomous choice contingent question. To estimate the membership function for WTP, 

we regress comfort level for the ‘yes’ answer on the relative bid expressed as a 

percentage of the respondent’s income. Similarly, we regress comfort level for the ‘no’ 

answer on the respondent’s relative bid to estimate the membership function for WNTP. 

Functional forms for fitting the sample data must satisfy both conditions (17) and (18).  

Membership functions for aggregated WTP and WNTP are estimated from 

available data using a statistical approach for constructing membership functions (see 

                                                           
5The authors exclude observations with income levels below 11,000 SEK and above 
300,000 SEK, and those with education levels below 1 year and above 25 years of 
education (to eliminate cases where education exceeds age) (C–Z. Li, pers. cor.). 
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Chameau and Santamarina 1987). Instead of individual WTP and WNTP, estimated 

membership functions of aggregate WTP and WNTP are developed. For data (Wi,µi), 

i=1,2, …, n, and choice of a suitable functional form, membership functions can be 

estimated using the method of least-squares. Once the parameter values a, b, … are 

determined, then  

(19) µ(W) = max[0, min(1, f(W, a, b, …)] ,   ∀W.  

Different classes of functional forms are used in the literature to construct membership 

functions, with Turksen (1991) providing a review of different approaches. We selected 

two nonlinear forms of membership function that can cover a broad range of applications 

(Sakawa 1993). The functional form used for ‘yes’ responses is: 

(20) 
2
1)(tanh 1

~ ++= − cbWaMµ ,  a, b, c ∈ℜ and a>0 . 

The minimum of the sum of squared deviations of the respondents’ post–decisional 

comfort levels is reached for estimated parameter values, a=1.775, b= –0.026 and 

c=0.187.  

The functional form employed for ‘no’ responses is:  

(21) 
2
1)tanh(

2
1)(~ ++= edWxNµ ,  d, e∈ℜ and d>0.  

The minimum of the sum of squared deviations of the respondents’ post-decisional 

comfort levels is obtained for d = 0.044 and e = 0.466.  

Our estimate of the intersection of the membership of maximum WTP and 

minimum WNTP occurs at a comfort level of 74.9% and is associated with the relative 
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bid of 1.82% of income.6 As the average income in the given sample is 171190 SEK, the 

intersection of the two membership functions is associated with 3116 SEK. This value 

may be interpreted as the respondents’ WTP with a comfort of 74.9%, but it is also the 

respondents’ WNTP with 74.9% comfort. It is thus the largest estimated value of the 

amenity for which there is an aggregate indifference between WTP and WNTP. Other 

measures of welfare may be reported if higher comfort levels than 0.749 are applied. In 

that case, we can report the WTP at the comfort level c>0.749 (which will be below 3116 

SEK) and the WNTP at the level c (which will be above 3116 SEK) (see Figure 6). The 

range of values between WTP and WNTP could be interpreted as the aggregated 

indifference at the comfort level c. 

To analyze the sensitivity of the fuzzy estimates to the form of the membership 

functions, linear and exponential specifications for WTP and WNTP are also considered. 

Upon regressing the respondents’ post-decisional comfort levels for both ‘yes’ and ‘no’ 

responses on the relative bid, we obtain the following respective membership functions 

for WTP and WNTP: 

(22) Linear:  xxM 655.4461.83)(~ −=µ  and xxN 071.1883.72)(~ +=µ  

(23) Exponential:

 
)552.1210.0exp(1

1)(~
−+

=
x

xMµ and
)932.0088.0exp(1

1)(~
−−+

=
x

xNµ .  

As indicated in Table 1, the results are not sensitive to functional form. The estimates of 

WTP provided using our fuzzy approach are lower than those of Li and Mattsson (1995). 

Our estimate of maximum WTP (at about 75% comfort) ranges from 3116 SEK to 3561 

                                                           
6This is found by solving: 1.77 tanh–1(–0.026W+0.187) = 0.5 tanh(0.044W+0.466). 
 

 27
 



SEK is less than half the magnitude of Li and Mattsson’s lowest estimates—7352 SEK or 

8578 SEK depending on what assumptions are made. 

 

Table 1: Intersection of WTP and WNTP Membership Functions: 
Comparison of Different Functional Specifications 
 Hyperbolic tangent Linear Exponential 
Proportion of income 1.82% 1.85% 2.08% 
Income level 3116 SEK 3167 SEK 3561 SEK 
Comfort level 0.749 0.749 0.753 

 

Several explanations for the difference between Li and Mattsson’s and our results 

are possible. The one that accounts for the major difference is that Li and Mattsson use 

mean WTP as a measure of welfare. If we assume complementarity of the ‘yes’ and ‘no’ 

answers (as Li and Mattsson do), i.e., Cyes(W)=1–Cno(W), then the membership functions 

of WTP and WNTP would intersect at (w0, 0.5) and the value w0 would correspond to the 

median WTP. In that sense, it would be more appropriate to compare our measure with 

the median WTP.7 Further, we make different assumptions about the nature of preference 

uncertainty (as discussed in the introduction).  

Asymmetry of the membership functions for WTP and WNTP may be explained 

by different attitudes towards acceptance and non-acceptance of a particular bid. 

Complete certainty of a ‘no’ answer occurs only for very high bid values, but respondents 

choose not to accept a wide range of bid values including low ones. Respondents indicate 

their uncertainty about an exchange of money for an environmental amenity through 

expressed comfort levels that are below 1. We found that respondents indicate preference 

                                                           
7 Estimates of median WTP are usually lower than mean WTP, but Li and Mattsson 
(1995) do not report median WTP for forest preservation and we can only guess at what 
these values might be. 
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uncertainty even at low positive bid values. Further, the membership function for WTP 

was found to have its highest value in the negative domain, consistent with the results of 

Kriström (1997) and Loomis and Ekstrand (1998). Finally, for a particular bid, the 

membership values of WTP and WNTP add to one only in extreme cases of very high or 

very low bid values. These results indicate that preference uncertainty exists for a wide 

range of bid values. 

6. Discussion 

In this study, we introduced the notion of fuzzy set theory in a first attempt to employ it 

as an alternative approach for dealing with preference uncertainty within the standard 

contingent valuation framework. Although we emphasize the importance of allowing 

consumer preferences to remain uncertain, the estimation techniques that we employ are 

preliminary. Ultimately the fuzzy utility approach should lead to estimates of fuzzy 

willingness to pay derived from fuzzy utility maximization subject to (perhaps fuzzy) 

constraints. Perhaps, it requires the estimation of the fuzzy parameters of a probit or logit 

model, but fuzzy estimation techniques are generally in their infancy and are not yet 

available (see Redden and Woodall 1994, Paliwal et al. 1999). Future research will need 

to include analyst’s uncertainty explicitly together with a respondent’s vague preferences, 

which would require incorporating both stochastic (expressing an analyst’s uncertainty) 

and fuzzy (containing a respondent’s vague preferences) components into the analysis of 

contingent valuation responses. Further research also needs to consider different methods 

for comparing fuzzy numbers and their impact on (fuzzy) CV estimates, and how to 

evaluate uncertain coefficients of the fuzzy utility function. Finally, it is necessary to 
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develop an appropriate survey instrument that allows respondents to express their 

preference uncertainty qualitatively, rather than relying on data generated from CV 

surveys that essentially require crisp responses. Indeed, it is likely necessary to develop 

survey instruments that also treat fuzziness due to vagueness in classification (see Li 

1989).  

At this stage, it is not possible to say that the fuzzy approach is somehow ‘better’ 

than standard approaches for evaluating environmental amenities. The fuzzy approach to 

contingent valuation interprets uncertainty in a fundamentally different way than the 

standard random utility maximization model. Our results indicate persistence of 

preference uncertainty over a wide range of bid values, thus suggesting that uncertainty 

cannot be treated only as a random phenomenon to be minimized by providing 

respondents with more information. In that case, the fuzzy approach needs to be seriously 

considered as a method for addressing preference uncertainty in non-market valuation. 
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Figure 1: Non-symmetric triangular fuzzy number 
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Figure 4: Interpretation of Dichotomous Choice Answers with Fuzzy Utility 
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Figure 5: Membership functions for WTP and WNTP as represented by  
the fuzzy numbers, M~  and N~ , respectively. 
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Figure 6. The choice rule at the µD comfort level. 
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