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Forest Management & Policy Analysis 

using Computer Models 

1. What is the purpose? 

• Policy analysis? 

• Making forest plans (2nd guessing company plans)? 

• Informing oneself, Chief Forester or politicians?   

2. How detailed are your needs? 

3. How transparent should any modeling be to 

yourself and others?  

4.  How restricted is your knowledge or that of your 

colleagues and supervisors? 

5. What resources are available? 



Uses of computer models in forestry 

and ecosystem management 

1. Prescriptive: suggest practical solutions for 

solving problems 

2. Predictive: predict consequences of 

government policies (e.g., CRAM, 

integrated assessment models) 

3. Sensitivity analysis: Explore alternative and 

extremes – ‘what if’ scenarios 



Calibration and Verification 

• Scientific forecasting procedures, e.g., as laid out by the 

International Institute of Forecasters 

(www.forecastingprinciples.com)  

• Calibration 

– Positive mathematical programming (Howitt) 

– ‘Mixes’ method (McCarl and colleagues) 

• Latest advance enables inclusion of new options, land uses, 

management strategies, etc. 

• Verification 

– Compare model outcomes to realization (ex post analysis) 

– Is back-casting possible?  

http://www.forecastingprinciples.com/


Two Basic Model Types 
1. Optimization models 

– Constrained mathematical programming models 

• LP, QP, NLP, DP, SDP 

• IP, MIP, MINLP 

• Fuzzy LP, MODM (goal programming), etc.   

– Advantages:  

• Solution is optimal  

• One can get shadow prices  

• Results (and steps) have an economic interpretation 

– With new computing power, huge problems can be 

addressed (>10 million constraints) 

– Can incorporate risk and risk preferences 



Two Basic Models (cont) 

2. Heuristics 

– Major benefit: They work, they provide an answer 

– No guarantee solution is better than ANY alternative  

• Intuition may be preferred: the on-site expert may do 

better than the modeler 

– Heuristics can help forest-level, on-the-ground 

managers design forest management plans 

– No ability to calibrate such models 

– Economists generally eschew (oppose?) such models  

– Are they useful for designing and analyzing forest 

policy?? 



Heuristics vs Optimization Models 
• Pukkala & Heinonen (Nonlinear Analysis: Real World 

Applications 2006): need heuristic approach for forest planning 

involving multiple objectives and parties, non-linear, non-

additive and spatial components 

• Boston & Bettinger (For Sci 1999; Silva Fenn 2001) show that 

heuristics needed when dealing with spatial problems (e.g., 

green-up and adjacency) – John Nelson’s work 

• Vanderkam et al. (Biological Conservation 2007) show LP 

preferred to heuristic algorithms for designing efficient 

conservation reserve networks 

• Williamson et al. (Ch 15 in Environmental Modeling for 

Sustainable Regional Development, 2011) demonstrate that LP is 

the primary method and tool for risk analysis in forestry 



Question to Ask: Heuristics vs Optimization 

• When do you use which approach? SOME ANSWERS 

– Rely on optimization approaches whenever possible as these 

are richer in various ways: 

• Easier and able to calibrate and verify 

• Results (including intermediary results) have a much richer interpretation 

–  Rely on heuristics when the problem is simply too complex to 

solve using an optimization approach. 

• Road construction and green-up & adjacency are classic examples 

(spatial!) 

• Rule of Thumb: Rely on optimization, even linear approximations 

of nonlinear problems, unless you are forced to use a heuristic. 

Even then there are heuristics that seek optimal solutions, most 

notably, learning models, TABU search and even fuzzy 

optimization methods.  



General Mathematical Programming Formulation 

Optimize   F(x) 

Subject to (s.t.)  G(x)  S1 and x  S2 
 

F(x), G(x) linear & x non-negative → linear program 
(LP) 

F(x) and/or G(x) nonlinear & x non-negative → 
nonlinear program (NLP) 

F(x) quadratic and G(x) linear & x non-negative → 
quadratic program (QP) 

F(x) and G(x) linear and/or nonlinear & x integer → 
integer program (IP) 



Linear Programming: Motivating Example 

Poet with woodlot needs extra earnings, but wants to work no 
more than 180 days per year. Can earn $90/ha/yr ‘managing’ 
cedar, $120/ha/yr managing hardwoods (mixed, northern). Need 
2 work days (wd) per ha per yr to ‘manage’ cedar; 3 wd/ha/yr 
for hardwoods. Poet’s problem looks like this: 
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hardwood of ha50
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Linear Program (LP): 

)negativity-(non0,      

)constraint area(hardwood50      

)constraintarea(cedar 40      
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GENERAL FORMULATION: 

Max Z = c X 

s.t.  AX ≤ b 

         X ≥ 0 

where c, b and X are vectors and A is the 
technical coefficients matrix  



LP example: Pulp mill pollution problem 

Let x1= mechanical pulp (t/day) and x2= chemical pulp (t/day) 

Both require 1 work day per 1 t of pulp produced  

BOD= Biochemical Oxygen Demand (a measure of pollution) 

 1 t mechanical pulp produces 1 unit BOD  

 1 t chemical pulp produces 1.5 units BOD. 

Revenues: mechanical pulp: $100/t, chemical pulp: $200/t 

 

Possible Objectives: minimize BOD output 

                   maximize employment 

                   maximize revenue 

Constraints: 

  at least 300 workers need to be employed 

  minimum revenue of $40,000 per day 
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Multiple-objective decision making (MODM) problem 
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Multiply both 
sides by -1 to 
get into 
standard form: 



Standard form of LP problem: 

Max   Z = c X  (n decision variables) 

s.t.   AX ≤ b  (m constraints) 

           X ≥ 0 

where c1n = [c1, c2, ...., cn] 
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Assumptions of LP: 

1. Objectives and constraints are appropriate to the 

problem at hand 

2. Proportionality 

• Contribution of each decision variable to objective is constant 

and independent of variable level 

• Use of each resource per unit of each decision variable is 

constant and independent of variable level 

NO ECONOMIES OF SCALE 

3. Addititivity (not multiplicative, no interactions) 

4. Divisibility (decision variables infinitely divisible) 

5. Certainty: There is no stochasticity/randomness 



Solving LPs: Graphical Solution 

Consider Again the Poet Problem: 

 

Max  Z = 90 x1 + 120 x2 (revenue) 

 

s.t.  2 x1 + 3 x2  180 (time) 

   x1  40   (ha of cedar) 

   x2  50   (ha hardwood 

  x1, x2 ≥ 0   (non-negativity) 
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Further Example 

A firm produces wheat and canola using tractors, 

land and labor as inputs.  

 
 

Constraint 

Input Requirements Input 

Availability Wheat Canola 

Tractor 2 1 70 

Land 1 1 40 

Labor 1 3 90 

Net revenue $40 $60 



Max  π = 40 x1 + 60 x2 (net revenue) 

 

s.t.  2 x1 + x2  70  (tractor hours) 

   x1 + x2  40  (land in ha)  

   x1 + 3 x2  90  (labor hours)  

  x1, x2 ≥ 0   (non-negativity) 
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Computational Software 

• Excel (Solver) (Can imbed LP in a program such as VBA) 

• GAMS 

• Matlab (can call GAMS from within Matlab) 

• Other 

       XA (Add-in to Excel or stand alone) 

       Premium Solver (add-in to Excel) 

Points: 

• LP solution algorithms are pretty standard and based on simplex 
algorithm 

• Lots of different solvers for non-linear (NLP), integer (IP), mixed-
integer (MIP), etc. However, QP and many NLP problems are 
solved using the simplex algorithm simply by taking nonlinear 
constraints and making them into linear pieces. Think of a soccer 
ball – it is not truly round but consists of many planes 



Simplex Algorithm 
(‘The algorithm that controls your life’) 



Slack variable representation of 

PRIMAL agricultural problem: 

Max π = 40 x1 + 60 x2 + 0xs1 + 0xs2 + 0xs3 (net revenue) 

 

s.t. 2 x1 + x2 + xs1  = 70  (tractor hours) 

  x1 + x2         + xs2  = 40  (land in ha)  

  x1 + 3 x2             + xs3 = 90  (labor hours)  

 x1, x2, xs1, xs2, xs3 ≥ 0               (non-negativity) 

 

Begin with slack variables set to RHS constraint values 



Duality 

• For every PRIMAL problem, there is a DUAL 
problem 

• Solving the PRIMAL simultaneously solves the 
DUAL (i.e., slack variables), and vice versa 

• If a solution to the PRIMAL cannot be 
achieved, it may be possible to get a solution by 
solving the DUAL instead 

• For economic applications, the DUAL 
variables have an important interpretation as 
shadow prices 



Duality (cont) 

PRIMAL    DUAL 

Max   Rev = c X  Min  Cost = b Y 

s.t.   AX ≤ b  s.t.   A′ Y ≥ c 

          X ≥ 0      Y ≥ 0 

Maximize ↔ Minimize 

≤ constraint ↔ y ≥ 0 

x ≥ 0 ↔ ≥ constraint 

= constraint ↔ y free 

x free ↔ = constraint 



Duality (cont) 

PRIMAL DUAL 

Max  NR = 30x1+45x2 ↔ Min TC = 15y1+10y2+0y3 

Subject to ↔ Subject to 

input use ≤ input supply ↔ imputed input price ≥ 0 

4x1+ 3x2 ≤ 15 ↔ y1 ≥ 0 

2x1+ 1x2 ≤ 10 ↔ y2 ≥ 0 

–x1+ 5x2 ≤ 0 ↔ y3 ≥ 0 

x1 ≥ 0 ↔ 4y1+ 2y2 – y3 ≥ 30 

x2 ≥ 0 ↔ 3y1+ y2 + 5y3 ≥ 45 

Activity levels ≥ 0 ↔ MC ≥ MR 



DUAL slack  representation of  

agricultural problem: 

Min C = 70 y1 + 40 y2 + 90y3 + 0ys1 + 0ys2 (cost) 

 

s.t. 2 y1 + y2 +   y3 – ys1  = 40 (wheat) 

    y1 + y2 + 3y3   – ys2 = 60 (canola)  

 y1, y2, y3, ys1, ys2 ≥ 0          (non-negativity) 

 

ys1 and ys2 are the dual slack (or surplus) variables: ys1 is 

marginal loss for wheat; ys2 is marginal loss for canola 



Slack & Dual Slack (Surplus) 

Variables 

From two slides earlier, we had MC ≥ MR in the dual 

representation. The constrains of the dual problem can be 

associated with a slack (or marginal loss) variable, which has 

the following definition and meaning: 

 

MC = MR + dual slack variable 

 

MC – marginal loss = MR 

 

where the marginal loss is identically equal to the dual slack 

variable. That is why we subtract ys from the left-hand-side of 

the dual constraints in the previous slide. 



  
 

If you are dealing with an economics problem (where the 

objective is to minimize cost or maximize net private or social 

benefits), then every ‘move’ has an economic interpretation 



APPENDIX A 

SIMPLEX ALGORITHM 

• How does it work? 

• What does it mean? 



Primal Simplex Algorithm 

Step 1: Know solution lies at extreme point, choose a 

feasible basis and compute corresponding basic feasible 

solution. We begin with point A = (0,0) – the origin 

where all the slack variables equal RHS values of the 

constraint. 

Step 2: Verify if the basic feasible solution from Step 1 is 

also an optimal solution. If  ‘yes’, stop; if  not, continue. 

Step 3: Select an adjacent extreme point (new basic 

feasible solution) by changing old feasible basis by only 

one column vector (go from A to B or A to E – see next 

slide). Go to Step 2. 
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This example has three 

constraints. We want to 

demonstrate how the 

simplex algorithm works, so 

we will need an even 

simpler example, one with 

only two constraints. 



Max  Z = 3 x1 + 5 x2  (revenue) 

s.t.  2 x1 + 4 x2  16  (land constraint) 

  6 x1 + 3 x2  18  (labor constraint)  

  x1, x2 ≥ 0   (non-negativity) 

Introduce Slack Variables: 

Max Z = 3 x1 + 5 x2 + 0xs1 + 0xs2   (revenue) 

s.t.  2 x1 + 4 x2 + xs1 = 16  (land) 

  6 x1 + 3 x2  + xs2 = 18  (labor)  

  x1, x2, xs1, xs2 ≥ 0  (non-negativity) 

Wheat (x1) & Corn (x2) Output Optimization: 



Some asides: 

• In the above, wheat and corn are measured in the 

same units, say tons. Thus, the amount of land 

needed to grow a unit of corn is greater than that 

needed per unit of wheat 

• Note: In the final solution, a slack variable may be 

> 0. Thus, since not all of the resource is used, its 

shadow value is 0. A general rule: ps × xs = 0 

(Complementary slackness condition) 

– Either there is no unused resource or its shadow value is 

zero, or both 



Step 1: Starting feasible basic solution is: 

  x1 =0, x2 =0,  xs1 > 0, xs2 > 0 

Step 2:  Calculate value of  Z (which = 0 at this point) 

Entry Criterion: Select activity associated with the 

most positive coefficient in the objective function. 

   → x2 enters the basis 

Step 3: Shift the basic feasible solution from one 

extreme point (feasible basis) to an adjacent one. 

Activity x2 enters the basis, so one of xs1 or xs2 must 

exit. Determining which to exit is a decision with 

economic meaning.  



Basic Feasible Solution 

Minimum Ratio Criterion: 

x2 = min{16/4, 18/3} = min{4, 6} = 4  

 

Therefore, new BFS solution is:  

x1 = 0, x2 = 4, xs1 = 0, xs2 = 6 

Current New 

x1 = 0 x1 = 0 

x2 = 0 x2 > 0 (enters) 

xs1 = 16 xs1 = 16 – 4x2≥0  

xs2 = 18 xs2 = 18 – 3x2≥0  

SUMMARY 



Exit Criterion: To change the current feasible 

basis, eliminate the column corresponding to the 

index in the numerator of the minimum ratio: 

 










activity new of tscoefficien positive

solution feasiblecurrent  of value
min

new
x

Take xs1 out of the basis and replace it with x2. 



Iteration #2 

Step 2: Evaluate current basic feasible solution. 

Z = 3 x1 + 5 x2 + 0xs1 + 0xs2 = 3(0) + 5(4) + 0(0) + 0(6) = 20 

Corn is in the basis. All land is used up, but there is slack labor. 

Remaining candidate is wheat but, to get wheat in, some corn acreage 

must be given up. So must determine the opportunity cost (OC) of 

wheat in terms of corn. Recall: 

 y = f(x1, x2) → dy = f1 dx1 + f2 dx2  

Along a production possibility frontier:  

 dy = 0  → f1 dx1 + f2 dx2 = 0 

    

→ MRTTx2, x1 = –dx2/dx1 = f1/f2  

                              = Marginal sacrifice1/Marginal sacrifice2 



Constraint on land:   2x1 + 4x2 + xs1 = 16 

Total differentiating: 

2 dx1 + 4 dx2 = 0 (as xs1 is taken as constant) 

 → MRTTx2 → x1 = – dx2/dx1 = ½ 

 

A generalized matrix version of this is: 

Max cX  s.t. A x1 + B x2  

 

→ MRTTx2 → x1 = – dx2/dx1 = B–1A 



Max  Z = 3 x1 + 5 x2  (revenue) 

s.t.  2 x1 + 4 x2  16  (land constraint) 

  6 x1 + 3 x2  18  (labor constraint)  

  x1, x2 ≥ 0   (non-negativity) 

Recall our problem:  

Wheat (x1) & Corn (x2) Output 

Optimization 



Opportunity marginal cost: Sacrifice of one 

additional unit of output as measured by the foregone 

alternative production opportunity, which is 

measured by the MRTT (slope of the transformation 

frontier). 

A sacrifice can be positive or negative. Avoid 

positive sacrifice; welcome negative sacrifice. 

 

OC of wheat (x1)  
= (sacrifice in terms of corn) – (unit revenue of wheat)  

= (wheat land/corn land)  (revenue of 1 unit corn land)  

  – (revenue of one unit wheat land) 

 = (2/4)  5 – 3 = – ½  



Note in the previous slide that:  

MRTTwheat land→corn land = wheat land/corn land 
        = 2/4 

(Note that MRTT is constant, which is why it 
is simply a ratio, because of LP assumptions) 

 

To improve returns, therefore, redistribute 
available resources from corn to wheat 
production since the sacrifice is negative (i.e., 
there is a benefit from so doing) as OCwheat<0. 



Step 3: We showed wheat enters. What activity should leave? 

Opportunity input requirement of a given commodity (wheat) is 

the savings (as opposed to sacrifice) of inputs attributable to one 

unit of a foregone activity (corn) adjusted by the MRTT. 

Recall: Land constraint is fully satisfied. 

 

Opportunity labor requirement of wheat  

 = (wheat labor requirement) – (saving in terms of corn) 

 = 6 – ½  3 = 9/2 

Labor  

requirement 

Labor  

saving 

MRTTx2→x1 in land since land is limiting 



Current BFS New BFS 

x1 = 0 x1 > 0 

x2 = 4 x2 = 4 – ½x1 ≥ 0 

xs1 = 0 xs1 = 0 

xs2 = 6 xs2 = 6 – (9/2) x1 ≥ 0  

Calculations: 

 

4 ≥  ½ x1 → x1= 8;  6 ≥  9/2 x1 → x1= 4/3 

  

x1 = min{8, 4/3} = 4/3 

 

Then: x1 = 4/3, x2 = 10/3, xs1 = 0, xs2 =0 



Iteration #3 

 
Step 2: Z = 3(4/3) + 5(10/3) + 0(0) + 0(0) = 62/3 

Corn and wheat are in the BFS and there is no 

unused land or labor. Thus, this appears to be the 

optimal solution. 

 

Entry Criterion: Select activity associated with 

most negative OC. (There is none!) 

Exit Criterion:  Eliminate column corresponding to 

index in numerator of the minimum ratio. (Not 

needed) 



Max  Z = 3 x1 + 5 x2  (revenue) 

s.t.  2 x1 + 4 x2  16  (land constraint) 

  6 x1 + 3 x2  18  (labor constraint)  

  x1, x2 ≥ 0   (non-negativity) 

Recall our problem:  

Wheat (x1) & Corn (x2) Output 

Optimization 



Setting it up in tableau format: 

Initial Primal Tableau: 

Step 1 (entry): Choose 

most negative value in 

bottom row for entry so x2 

enters 

Z x1 x2 xs1 xs2 Sol 

0 2 4 1 0 16 

0 6 3 0 1 18 

1 –3 –5 0 0 0 

Step 2 (exit): 

Minimum ratio criterion 

xs1: 16/4 = 4 

xs2: 18/3 = 6 

Exit xs1 

Pivot element is circled and must be 

positive as must all elements in shaded 

column above the bottom row. 



First Iteration:  

Use row operations to get new tableau 

Z x1 x2 xs1 xs2 Sol 

0 1/2 1 1/4 0 4 

Multiply first row by ¼ to get 1 in the column under x2 

Z x1 x2 xs1 xs2 Sol 

0 2 4 1 0 16 

0 6 3 0 1 18 

1 –3 –5 0 0 0 

Initial tableau that needs to be changed 



Use row operations to get new tableau 

Z x1 x2 xs1 xs2 Sol 

0 ½ 1 1/4 0 4 

0 9/2 0 -3/4 1 6 

1 -½  0 5/4 0 20 

Now use row operations so that remaining entries in x2 column are 0. 

New 2nd row = old 2nd row – 3 × new 1st row 

New 3rd row = old 3rd row + 5 × new 1st row. 

Step 2 (exit): 

Minimum ratio criterion 

x2: 4/½ = 8 

xs2: 6 / 9/2 = 4/3 Exit xs2 

Step 1 (entry): Choose 

most negative value in 

bottom row for entry so 

x1 enters 



Second Iteration:  

Use row operations to get new tableau 

Z x1 x2 xs1 xs2 Sol 

0 1 0 -1/6 2/9 4/3 

Multiply second row by 2/9 to get 1 in the column under x1 

Z x1 x2 xs1 xs2 Sol 

0 ½ 1 1/4 0 4 

0 9/2 0 -3/4 1 6 

1 -½  0 5/4 0 20 

Second tableau that now needs to be changed 



Second Iteration:  

Use row operations to get new tableau 

Z x1 x2 xs1 xs2 Sol 

0 0 1 1/3 1/9 10/3 

0 1 0 -1/6 2/9 4/3 

1 0 0 7/6 1/9 20 2/3 

Z x1 x2 xs1 xs2 Sol 

0 ½ 1 1/4 0 4 

0 9/2 0 -3/4 1 6 

1 -½  0 5/4 0 20 

Now use row operations so that remaining entries in x2 column are 0. 

New 1st row = old 1st row – ½ × new 2nd row 

New 3rd row = old 3rd row + ½ × new 2nd row. 

Old tableau after 1st 

iteration 

New tableau 

after 2nd 

iteration 



Final Solution 

Z x1 x2 xs1 xs2 Sol 

0 0 1 1/3 1/9 10/3 

0 1 0 -1/6 2/9 4/3 

1 0 0 7/6 1/9 20 2/3 

ys1 ys2 y1 y2 

Note: All of the entries in the final (objective function) row are 

positive, so the entry requirement says no new variable will enter 

the basic feasible solution. Therefore, this is the solution. 

Dual and dual slack variables are indicated, with y1 

and y2 the shadow prices (dual variables). 



Possibilities: 

• Optimal solution is found. 

• Unbounded solution. Value of primal objective increases 

without bound. Occurs when it is not possible to find pivot 

in entering column because all elements ≤0. 

• Infeasibility of one or more constraints. Constraints are 

inconsistent and there is no feasible solution to the 

problem – this is a frequent result. 

• Degeneracy occurs if there are redundant constraints (e.g., 

x1 ≤ 25, x2 ≤ 25 and x1 + x2 ≤ 50) 

• More than one optimal (a variable is brought into basis 

without increasing the objective value) 



Dual Interpretation 
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There are cases where it is not possible to solve the primal 

problem but, by going to the dual, it is possible to solve the 

problem using the dual simplex method – illustrated in the next 

slide. 
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Because all (zj – cj) ≥ 0, we have a dual feasible solution. 

So we begin, under Sol, by choosing the most negative for 

exit, and use the minimum ratio criterion for determining 

what y to enter.  

How does this work when the values in the bottom 

row are all non-negative? Consider: 

4
)4(

16
,

)3(

18
min 













Compare the dual simplex algorithm on the 

previous slide with the original tableau and 

approach used by the simplex algorithm (below): 

Step 1 (entry): Choose 

most negative value in 

bottom row for entry so x2 

enters 

Z x1 x2 xs1 xs2 Sol 

0 2 4 1 0 16 

0 6 3 0 1 18 

1 –3 –5 0 0 0 

Step 2 (exit): 

Minimum ratio criterion 

xs1: 16/4 = 4 

xs2: 18/3 = 6 

Exit xs1 

Here the pivot element must be positive, 

but in the dual simplex algorithm it must 

be negative as shown in the previous 

slide. 



DUAL – PRIMAL Commonality 

Primal Lagrangian: 

LP=3x1+5x2+y1(16–2x1–4x2)+y2(18–6x1–3x2) 

  

Dual Lagrangian: 

LD   =16y1+18y2+x1(3–2y1–6y2)+x2(5–4y1–3y2) 

 =3x1+5 x2+y1(16–2x1–4x2)+y2(18–6x1–3x2) 

 

Dual and Primal are bound together by a 
common Lagrangian. 



DUAL/PRIMAL Solutions 

1) If solution to primal is unique, non-degenerate 

and optimal, optimal solution to dual is unique 

2) When primal has degenerate solution, dual has 

multiple optimal solutions 

3) When primal has multiple optimal solutions, 

optimal dual solution is degenerate 

4) When primal problem unbounded, dual is 

infeasible 

5) When primal is infeasible, dual is unbounded or 

infeasible 



APPENDIX B 

Linear Programming Extensions 

• Kuhn-Tucker conditions 

• Sensitivity analysis 

• Artificial variables method 

• Big M method 

• Phase I – Phase II method 



Max  z = c′x Min R = yb 

s.t.  Ax ≤ b s.t.  A′y′ ≥c 

x ≥ 0 y ≥ 0 

L = c′x + y′(b – Ax) L = yb + x′(c – A′y′) 

      = c – y′A = 0       = b – Ax = 0 

      = b – Ax = 0       = c′ – y′A =  0 

cn×1      xn×1     bm×1 y1×m     y′m×1  c′1×m 

Am×n      A′n×m 

x

L





y

L





x

L





y

L





Kuhn–Tucker Conditions and LP 



(1) c′ – y′A ≤ 0 (4) b – Ax ≥ 0  (these are just the constraints) 

(2) (c′ – y′A) x = 0 (5) (b – Ax) y = 0 

(3) x ≥ 0 (6) y ≥ 0 

Kuhn–Tucker Conditions: 

K-T conditions are necessary and sufficient conditions for an optimal. 

 (2) implies that (c′ – y′A) = 0 or x = 0 or both 

 (5) implies that (b – Ax) =0 or  y = 0 or both. 

 

These  are referred to as Complementary Slackness conditions. 



Sensitivity Analysis 

• Idea is to examine the range over which the 
optimal solution still applies. Range is determined 
by changes in: 

– Coefficients in objective function (c vector) 

– Values of constraints (RHS or b vector) 

– Changes in the technical coefficients (A matrix) 

• GAMS, Matlab, Maple and Excel provide some 
of this information, but it is best to change 
parameter values and re-run the optimization 
model. 



Some extensions to the Simplex method 

If the LP problem is in standard form with only  
constraints and b values that are all positive, then 
there is no problem with the simplex method 
achieving a solution. 

 

Problem: If there are , ≥ and = constraints 
and/or some b values are negative. Then we need 
to use the Big M or Phase I/Phase II method 
that involves use of Artificial variables. 



Artificial Variables 

• Slack variables are added if  constraint 

• Surplus variables are subtracted if ≥ constraint 

• Artificial variables are added to each constraint 
not satisfied if the xs equal zero: 

– If the RHS of a  constraint is negative, an artificial 
variable is added in addition to the slack variable on 
the LHS 

– If an = constraint, an artificial variable is added. 

– To a ≥ constraint an artificial variable is added (since 
a surplus variable was subtracted)  

• Why? Needed to ensure a non-negative initial 
feasible basis 



Big M method 

• All artificial variables need to be driven out of the 

solution before we get a true feasible basis. 

• The Big M method does this by adding an 

arbitrarily large negative penalty on the artificial 

variables in the objective function (recall that 

coefficients on slack and surplus variables are 

zero) 

• If the artificial variables cannot be driven from 

the solution if the penalty is set sufficiently large, 

then the problem is infeasible. 



Phase I/Phase II method 

• Used by computer algorithms. Solvers auto-

matically put in the slack, surplus and artificial 

variables; in other cases, an interior point algorithm 

or mixed interior-simplex method is employed. 

• Phase I: Replace objective function with sum of 

artificial variables and minimize this sum. If the 

minimized objective is non-zero, the solution is 

infeasible 

• Phase II: Use the basis found in phase I as the start 

of the simplex algorithm. 


