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Topics 

1. Integer programming in forestry 

2. Stochastic Dynamic Programming 

3. Calibrating models 

– Positive mathematical programming 

– Mixes  

 

• Many examples from Joseph Buongiorno & J. 
Keith Gilless, 2003. Decision Methods in Forest 
Resource Management (Academic Press Elsevier) 



1. Integer Programming 

• Many resource allocation problems involve 

lumpy decisions 

– Harvest entire site or not (forestry) 

– Plant entire field to same crop (agriculture) 

– Purchase new truck or tractor-trailer (transportation) 

– Purchase new combine/tractor (agriculture) 

– Build new warehouse (warehousing/manufacturing) 

• Fixed investments are integer in nature 
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Example (Buongiorno & Gilless Chap 11) 

• Forest consulting firm can contract for five 

projects, three in Georgia and two in Michigan. 

Each of the Georgia projects requires 1-person 

year and returns $10,000 profit; each Michigan 

project requires 10-person years and returns 

$50,000. 

• Firm has a staff of 20 

• Let xg = {0, 1, 2, 3} and xm = {0, 1, 2}.  
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Integer Programming Example 

• Problem: 

   Max  Z = xg + 5 xm 

   s.t. xg  3  (Georgia projects)  

    xm  2  (Michigan projects) 

    xg + 10 xm  20 (person-years) 

     xg, xm ≥ 0 
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Constraints: Notice one is redundant. Some 

solutions are subsequently ruled out. 



8 

0 

1 

2 

xm 

xg 

0 1 2 3 

Z=2 

Z=10 xm=2 

xg=3 

xg+10xm=20 

A 

B 

C 

E 

IP solution occurs at point E, while LP would 

give the solution at point A, which is infeasible. 

Rounding to nearest 

integer solution C 

leads to Z=8, too low. 



Second integer programming example  

9 

The Ministry of Forests is considering six multiple-use projects 
to provide timber and hunting opportunities. Each is 
represented in the figure by letters. Each project must be 
connected by a road to the existing road shown as a solid line. 
The dashed lines are the road sections that might be built. Each 
road section is identified by a number. The Ministry’s objectives 
are to: 
 

1. minimize road construction costs 

2. provide at least 400 hunting days per year 

3. harvest at least 30,000 m3 per year of timber 

4. get enough revenues from projects to cover total costs of 
road construction. 
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Three questions 

1. What is timber production and number of hunting 

days? What is total net present value? Each project 

must be done completely or not at all. 

2. Assume projects are perfectly divisible and that 

outputs and revenues of projects are directly 

proportional to the scale at which they are 

undertaken. How does this solution compare to 1? 

3. Road section 1 will clearly bear more traffic than 

other sections, and needs to be built to a higher 

standard. How is that taken into account?  
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Constructing the IP in GAMS 

1. Set up the model analytically 

2. Use the analytical representation of the 
objective function and constraints to develop 
the GAMS model 

Let s refer to road segments, p to projects/sites, c 
to construction costs, h to hunting days, t to 
timber and r to revenues 
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Min ∑i ci si  i=1, …, 11 (road building costs) 

s.t. ∑j hj pj ≥ 400 j=1, …, 6 (total hunting days) 

  ∑j tj pj ≥ 30 j=1, …, 6 (total timber harvest) 

  ∑j rj pj ≥ ∑i ci si  (revenue exceeds costs) 

Constraints that associate projects with road segments 

  pA ≤ s8   pB ≤ s9   pC ≤ s11 

  pD ≤ s10  pE ≤ s5   pF ≤ s6  

Constraints to ensure a collector road is built if branches are built 

  s11 + s2 ≤ 2 s1   s10 + s3 ≤ 2 s2  s5 + s6 ≤ 2 s4 

  s4 + s7 ≤ 2 s3   s8 + s9 ≤ 2 s7 

  pj, si binary 

p refers to projects, s to road segments 



Road Section 

1 2 3 4 5 6 7 8 9 10 11 

Cost ($103) 75 50 65 40 45 70 50 40 20 50 25 

Project 

A B C D E F 

Hunting days (per yr) 200 300 100 100 200 300 

Timber (103 m3/yr) 6 9 13 10 8 3 

Revenues ($103) 70 130 140 130 110 100 

Road building costs 

Benefits associated with each project 

GAMS program found here 

http://web.uvic.ca/~kooten/Training/RoadBuild1.gms










Solution 

Item Integer Non-integer 

Objective ($’000s) 335 335 

Hunting days 500.0 484.6 

Harvest (‘000 m3) 32 30 

Net returns ($’000s) 65.00 43.46 

Projects B, C, D B,  

0.846C, D 

Road segments s1, s2, s3, s7, 

s9, s10, s11 

s1, s2, s3, s7, 

 s9, s10, s11 



• Note that when we change the ‘project’ 

variable from being binary to a positive 

variable the answer depends on the solver 

that is used. Using MIP, the BDMLP solver 

gives a value of 1 for project C, while the 

OSL solver (from IBM) gives 0.846. 

• Now consider the third question: 
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Standard 

Low Medium High 

Carrying capacity (103 tons/yr) 40 50 70 

Cost ($103) 25 50 75 

Traffic from each project Project 

A B C D E F 

Traffic (103 tons/yr) 8 4 14 13 10 7 

Road section 1 will clearly have to bear more traffic than 

other sections, so it is necessary to build it to a higher 

standard. The carrying and construction costs for three 

different standards are: 
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Need several additional constraints: 
 

∑j fj pj ≤ ∑n kn sn,   n = 1Low, 1Med, 1Hi    (traffic load) 
 

s11 + s2 ≤ 2 (s1Low + s1Med + s1Hi) 
 

s1Low + s1Med + s1Hi = 1 
 

Plus objective function needs to be modified.  

The modified GAMS code is as follows:  

http://web.uvic.ca/~kooten/Training/RoadBuild2.gms


Note 3 choices for s1 



This table has been 
expanded 





Note added ‘traffic’ and 
‘Sproject’ equations 



Solution 

Item Integer Non-integer Integer/ 

heavier s1 

Objective ($’000s) 335 335 285 

Hunting days 500.0 484.6 500.0 

Harvest (‘000 m3) 32 30 32.0 

Net returns ($’000s) 65.00 43.46 115.0 

Projects B, C, D B,  

0.846C, D 

B, C D 

Road segments s1, s2, s3, 

s7, s9, 

s10, s11 

s1, s2, s3, s7, 

s9, s10, s11 

s1Low, s2, s3, 

s7, s9, s10, s11 



Problems with IP 

• Simplex algorithm does not work; most use a 
‘branch-and-bound’ algorithm – choose integer 
values for variables and search along a branch 
for ‘better’ solutions than those found earlier 
(e.g., those associated with starting values). If 
none found, look at other paths. Optimal 
solution tedious to find 

• No Kuhn-Tucker conditions, so there is no 
guarantee that any solution is optimal 

• No dual solution, so there is no reduced cost/ 
contribution calculation and no shadow prices 
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Mixed Integer Programming 
• Real-world problems feature both continuous 

and integer variables – hence, we have mixed 
integer programming (MIP) problems  

• Linear versions of such models can be solved, 
but the scale of models is limited. The best 
solver for MIP problems in CPLEX 

• Nonlinear models with integer variables are 
extremely tricky to solve and solvers are only 
now beginning to appear. Hence, heuristics such 
as ‘tabu search’ are often used instead.  
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General MIP Formulation 

Min Z = ∑j vj xj + ∑k fk Qk   j, k = 1, ..., n 

s.t.  A x  b    m constraints 

  –dj xj +  Qj  0   for all j=k = 1, ..., n 

   ∑k Qk ≥ C 

Where 

 v is variable cost per unit and f is fixed cost per unit 

 x are continuous variables and Q are integer 

 C is the desired total capacity made up of the individual Qs 

 d is the proportion of relevant Q used in production at any time 

30 



31 

2. Stochastic Dynamic Programming (SDP) 

In deterministic DP, the state variable evolves according to the 
difference equation: 

   xt+1 = g(t, xt, ut) 

controlled by the appropriate choice of ut 
 

Now let xt be random/stochastic: 

   xt+1 = g(t, xt, ut, εt) 

where εt is a random variable.  
 

In practice, this equation is often represented by a transition 
matrix for each control and Markov chain programming is 
employed. 
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Flowchart for Stochastic DP System: 

ei= random effect occurring at 
stage i 
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Motivation 

• Example from Buongiorno & Gilless 
(Chaps 16 & 17; see also Chap 13) 

State i Volume (m3/ha) 

L (low) <400 

M (medium) 400-700 

H (high) >700 



34 

Forest Management Example 

Next state j 

Begin state i L M H 

L 0.40 0.60 0 

M 0 0.30 0.70 

H 0.05 0.05 0.90 

Transition probability matrix with NO management 

Assumed time step is 20 years 



• Assume forest is initially in state L with probability 1. We want to 
know how it moves over time without management. Where will 
it end up? 

   p0 = [1 0 0] 
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• In the long run, the stand of trees will have >700 

m3 timber with probability 0.82 and 400-700 m3 

with probability 0.12. 

 

• How long can one expect the stand to remain in 

one of the three categories? The mean residence 

time is  

   mi = SL/(1–pii)  
  

    where SL is the stage length (20 years) and pii is 

the diagonal element on PNM, or probability that a 

stand in state i at the beginning of the period is still 

in that state at the end of the period.  



37 

Mean residence time: 

 mL = 33.3 yrs, mM = 28.6 yrs, mH = 200 yrs 

Mean recurrence time is found as: 

   mii = SL/πi  

Recall the values of πi come from p*=[.07 .12 .82], 
and mii is the time it takes for a stand in state i to 
return to that same state after exiting it. 

 mLL = 285.7 yrs 

 mMM = 166.7 yrs 

 mHH = 24.4 yrs 
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Next state j 

Begin state i L M H 

L 0.40 0.60 0 

M 0 0.30 0.70 

H 0.40 0.60 0 

Transition probability matrix  

With Management 

Time step is 20 years 
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• Doing the same thing as before, we find: 

With Management 

State i Mean residence 

time (mi) 

Steady-state 

probability 

(πi) 

Mean recurrence 

time (mii) 

L 33.3 yrs 0.22 90.9 yrs 

M 28.6 yrs 0.46 43.5 yrs 

H 20.0 yrs 0.32 62.5 yrs 
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Calculating long-run returns 

• Suppose we have the following immediate 
return from harvest under management: 

Total 

volume 

(m3/ha) 

Average 

volume 

(m3/ha) 

Harvest and after harvest 

return to state L 

State i m3/ha $/ha 

L <400 259 0 0 

M 400-700 603 344 0 

H >700 817 558 7,254 
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Recursive Relationship 

• Let Vit be the value of a stand in state i (= L, 

M, H) with t periods until the end of the time 

horizon. 

• Let β =1/(1+r)20 

• Present value of expected returns with t+1 

periods to go to the end of the time horizon: 

  Vi,t+1 = Ri + β (piL VLt + piM VMt + piH VHt) 

 Begin with VLo= VMo= VHo= 0 
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Recursive relation: Stage 1 

Assume discount rate of 5% 

VL,1  = RL + β (pLL VL0 + pLM VM0 + pLH VH0) 

  = 0 + 0.377 {.4 (0) + .6 (0) + .0 (0)} = 0 

VM,1  = RM + β (pML VL0 + pMM VM0 + pMH VH0) 

  = 0 + 0.377 {.0 (0) + .3 (0) + .7 (0)} = 0 

VH,1  = RH + β (pHL VL0 + pHM VM0 + pHH VH0) 

  = 7254 + 0.377 {.4 (0) + .6 (0) + .0 (0)} 

  = 7254 
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Recursive relation: Stage 2 

VL,2  = RL + β (pLL VL1 + pLM VM1 + pLH VH1) 

  = 0 + 0.377 {.4 (0) + .6 (0) + .0 (7254)} = 0 

VM,2  = RM + β (pML VL1 + pMM VM1 + pMH VH1) 

  = 0 + 0.377 {.0 (0) + .3 (0) + .7 (7254)}  

  = 1914 

VH,2  = RH + β (pHL VL1 + pHM VM1 + pHH VH1) 

  = 7254 + 0.377 {.4 (0) + .6 (0) + .0 (7254)}  

  = 7254 
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Recursive relation: Stage 3 

VL,3 = RL + β (pLL VL2 + pLM VM2 + pLH VH2) 

  = 0 + 0.377 {.4 (0) + .6 (1914) + .0 (7254)} 

  = 433 

VM,3 = RM + β (pML VL2 + pMM VM2 + pMH VH2) 

  = 0 + 0.377 {.0 (0) + .3 (1914) + .7 (7254)}  

  = 2130 

VH,3 = RH + β (pHL VL2 + pHM VM2 + pHH VH2) 

  = 7254 + 0.377 {.4 (0) + .6 (1914) + .0 (7254)}  

  = 7687 
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Recursive relation: Stage n 

Since β < 1, convergence eventually occurs (in this 
case for t > 10). The result is that, for each potential 
starting state, we find the following value: 

 VL,n = $624/ha 

 VM,n = $2343/ha 

 VH,n = $7878/ha 

Long-run expected return is found by multiplying 
the above values by [πL πM πH] = [.22 .46 .32] 

  Expected return = $3736/ha 
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Stochastic DP (cont) 

So far we have had no decision to make.  

Let p(i,j,k) be the probability that, if system is in state i at time t, 

it will be in state j at t+1 if u=k. 

 Bellman’s Equation: 
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Transition probabilities replace state equation, or 

equation of motion 

One transition matrix for each decision 

Sum of each row =1.0 

Columns are single-peaked 

Markov Assumption of DP: All the information about the past is 
contained in the present value of the state variable. 
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• Policy iteration: If any state is reachable 

from any other state, then there is convergence 

toward an optimal policy that holds for any t. 

• Optimal policy: Optimal decision for any 

value of state variable at any t. 

• Value iteration: The optimal policy depends 

not only on the value of the state variable, but 

also on t. Some states are not reachable from 

any other state (viz., soil erosion) – there can 

be an absorbing state 

SDP Definitions 
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Forestry example:  
Transition matrices 

NO CUT CUT 

Begin Next state j Next state j 

state i L M H L M H 

L 0.40 0.60 0.00 0.40 0.60 0.00 

M 0.00 0.30 0.70 0.40 0.60 0.00 

H 0.05 0.05 0.90 0.40 0.60 0.00 
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Returns to each decision/state 

State Immediate Return Rik ($/ha) 

i NO CUT CUT 

L 0 0 

M 0 4,472 

H 0 7,254 
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Recursive Relationship 

Present value of expected returns with t+1 

periods to go to the end of the time horizon: 

Vi,t+1 =  

Max { [RiN + β (piLN VLt + piMN VMt + piHN VHt)], 
 

 [RiC + β (piLC VLt + piMC VMt + piHC VHt)]} 
 

where pijk is the probability that a stand moves from 

state i to state j when the decision is k (= N,C) 
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Recursive Relationship (cont) 

 Proceed as before, but now keep track of the 
best decision –  

   cut (C)   

   no cut (N) 

 

 Again, begin with VLo= VMo= VHo= 0  

   r = 5% so β ≈ 0.377 
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Recursive relation: Stage 1 

VL,1  = Max{ [RLN + β (pLLN VL0 + pLMN VM0 + pLHN VH0)],   
 [RLC + β (pLLC VL0 + pLMC VM0 + pLHC VH0)]} 

      

  = Max {[0 + 0.377(.4 (0) + .6 (0) + .0 (0))],  

   [0 + 0.377(.4 (0) + .6 (0) + .0 (0))]} = 0 (N) 

 

VM,1  = Max{ [RMN + β (pMLN VL0 + pMMN VM0 + pMHN VH0)],  
  [RMC + β (pMLC VL0 + pMMC VM0 + pMHC VH0)]} 

      

  = Max {[0 + 0.377(.0 (0) + .3 (0) + .7 (0))],  

   [4472 + 0.377(.4 (0) + .6 (0) + .0 (0))]} = 4472 (C) 
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Recursive relation: Stage 1 (cont) 

VH,1 = Max{ [RHN + β (pHLN VL0 + pHMN VM0 + pHHN VH0)], 
 [RHC + β (pHLC VL0 + pHMC VM0 + pHHC VH0)]} 

      

  = Max {[0 + 0.377(.05 (0) + .05 (0) + .9 (0))],  

   [7254 + 0.377(.4 (0) + .6 (0) + 0 (0))]}  

 

  = 7254 (C) 

 

Decision: [No cut, cut, cut] = [N C C] 
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Recursive relation: Stage 2 

VL,2  = Max{ [RLN + β (pLLN VL1 + pLMN VM1 + pLHN VH1)],   
 [RLC + β (pLLC VL1 + pLMC VM1 + pLHC VH1)]} 

      

  = Max {[0 + 0.377(.4 (0) + .6 (4472) + .0 (7254))],  

          [0 + 0.377(.4 (0) + .6 (4472) + .0 (7254))]} = 1011 (NC) 

 

VM,2  = Max{ [RMN + β (pMLN VL1 + pMMN VM1 + pMHN VH1)],   
 [RMC + β (pMLC VL1 + pMMC VM1 + pMHC VH1)]} 

      

  = Max {[0 + 0.377(.0 (0) + .3 (4472) + .7 (7254))],  

        [4472 + 0.377(.4 (0) + .6 (4472) + .0 (7254))]} = 5483 (C) 
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Recursive relation: Stage 2 (cont) 

VH,2 = Max{ [RHN + β (pHLN VL1 + pHMN VM1 + pHHN VH1)],  

    [RHC + β (pHLC VL1 + pHMC VM1 + pHHC VH1)]} 

      

  = Max {[0 + 0.377(.05 (0) + .05 (4472) + .9 (7254))],  

   [7254 + 0.377(.4 (0) + .6 (4472) + 0 (7254))]}  

 

  = 8265 (C) 

 

Decision: [N C C] 
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Long-run solution 
• After 10 iterations, the algorithm converges 

on an equilibrium solution given below: 

 

 

State i 

 

 

Decision 

 

Net present value  

($/ha) 

Long-run 

probability 

(πi) 

L No cut 1,623 0.40 

M Cut 6,095 0.60 

H Cut 8,877 0.00 

Calculation of long-run probabilities is illustrated below 
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How do we find the long-run probability 
vector and expected returns? 

• Create a new transition matrix by taking, for each decision, the row 
out of the matrix associated with that decision.  

• Example: Suppose the transition matrices are ‘reachable’ and the 
optimal policy is u1 if in state 2 and u2 when in state 1 or 3. Then: 
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Let π = [π1 π2 π3] be the probabilities of being in states 1, 2 and 3 in 

the long run. We can solve π as was done earlier, or by solving π = π 

Pn, which is the same as finding: 

Note: Each row is the same 

Problem: Since probabilities have the property that  

  0 ≤ prob ≤1,  

as n → ∞, P collapses to a null matrix. Another approach is needed 
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We can find π as follows: 

Let  

 

 

 

Then Π =           = D (I + D – P)–1  

  

and:  Expected returns = ER = [π1 π2 π3] × 

 

where Ri refers to the returns to state i under the optimal 
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• In the previous cut/no harvest timber 

management example, the decision rule is no cut 

whenever in state L, and cut in states M and H 

• Taking the ‘L row’ from the ‘no cut’ matrix and 

the ‘M’ and ‘H’ rows from the ‘cut’ matrix gives: 
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  0.6 -0.6 1.0 

I+D-P = -0.4 0.4 1.0 

  -0.4 -0.6 2.0 

        

  1.4 0.6 -1.0 

Inv(I+D-P) = 0.4 1.6 -1.0 

  0.4 0.6 0 

        

  0.4 0.6 0 

D*Inv(I+D-P) = 0.4 0.6 0 

  0.4 0.6 0 
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Summary 

• From the SDP algorithm (previous table on slide 57), the long-
run expected returns (ER) for each state: 

  ER if initially in L:  $1623/ha 

  ER if initially in M:  $6095/ha 

  ER if initially in H:  $8877/ha 

• The long-run expected return is found by multiplying the π 
vector by the returns vector, which gives $4306.20/ha.  

• Note that you never let trees grow to reach state H since they 
are harvested in state M. 
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3. Mathematical Programming Models: 

Validation and Calibration 

• Norton & Hazell suggest tests for validating a sectoral model: 
– Capacity test for over-constrained models 

– Marginal cost test: Marginal costs of production plus implicit 
opportunity costs of fixed inputs must equal output price 

– Comparison of dual values with actual rental values (e.g. land) 

– Three additional validations look at input use, production levels and 
product prices.  

• Problem: Must ensure that the number of binding constraints 
in the optimal solution are less than the number of non-zero 
activities (variables, controls) observed in the base solution.  

• If there is enough data to specify a constraint set that 
reproduces the optimal, base-level solution, no additional 
calibration is required. 
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Calibration 

• Two broad approaches to reducing specification error 
in optimization models 
– Demand Based: Employ a range of methods to add risk or 

endogenize prices, thus modifying the objective function, 
but substantial calibration issues usually remain. 

– Constrain activities by flexibility constraints, or step 
functions, over multiple activities. Contracts and/or quotas 
(e.g., that limit output from a power generating source), 
rotational requirements (in crop production), artificial but 
sensible constraints (e.g., no timber harvest in first 40 
years after planting), other input limitations, etc can be 
used   

• Nonlinear calibration is best, but risk alone provides 
insufficient calibration terms to calibrate a model  
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Why PMP? 

• Consider land allocated to crops in a certain region. 
Our objective is to model the underlying decision 
process that leads to this allocation. 

• Suppose we observe 8 different crops being grown.  

• For each crop, we have information on yields per ha, 
crop prices, average costs of production, etc. 

• If we impose all reasonable constraints, an LP will 
cause us to choose perhaps 2 or 3 crops, even though 
we observe eight; a nonlinear program might lead us to 
choose 3-4, but not all eight. What’s going on? 



18-Oct-12 67 

Why PMP? (cont) 

• To get the model to plant the requisite eight crops, it is 
necessary to add arbitrary (flexibility) constraints. 
– Calibration for the base year is possible, but there is no 

theoretical or other basis for the calibration, so one cannot 
be sure that scenario analysis is at all accurate. 

– Such calibration is arbitrary, not always useful as a policy 
guide, and not a preferred approach 

• PMP gets around this problem by using a calibration 
that takes into account the reasons for planting 
multiple crops, namely, risk, interactions among crops 
(to reduce pests, say), unobserved costs, between year 
interactions (benefits or costs), etc. 
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Cost-based approach to PMP 
calibration 

• Key Observation: every linear constraint in an optimization problem 
can just as well be represented by a nonlinear cost function with 
appropriately chosen coefficients. 

• Illustrate using a single crop cost-based PMP calibration 

– A single linear crop production activity is measured by 
the acres x allocated to the crop. The yield is assumed 
constant. The data available to the modeler are: 

• Marginal revenue/acre is constant at $500/acre 

• Average Cost = $300/acre 

• Observed acres allocated to the crop = 50 acres 
(unconstrained optimum) 

Key point: We have data on average not marginal cost! 
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x (acres) x*=50 

$ 

AC=300 

MR=500 

λ=200 

PMP Calibration: Single-crop Example 

0 
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PMP Calibration: Single-crop Example 
A measure of the value of the residual cost needed to calibrate the 
crop acreage to 50 (by setting marginal revenues equal to marginal 
cost at that acreage) is obtained from: 

 Maximize  π(x) = 500 x – 300 x 

 subject to  x ≤ 100 

The calibration proceeds in five steps: 

• Step I:  

Nonlinear calibration proposition: if we need calibration constraints, 
the cost and/or the production function is nonlinear. Define the total 
cost function to be quadratic in acres (x), as this is the simplest 
general form. 

   

   TC = α x + ½ γ x2 

Solution is clearly 

x=100, but we 

observe x=50 

Other functional 

forms are possible: 

Cobb-Douglas, CES 
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• Step II:  

– Under unconstrained optimization crop acreage expands 
until the marginal cost equals marginal revenue.  

– Clearly, MC = MR at x = 50, not x = 100 (we observe x = 
50). 

• Step III:  

– It follows that the value λ in the linear model is the 
difference at the constrained calibration value and is 
equal to MR – AC.  

– But (from Step II) MR = MC →  λ = MC – AC (since MR = 
MC at x = 50).  

– Assuming a quadratic total cost function TC, then: 
   MC = α + γ x and  AC = α + ½ γ x 
  → MC – AC = α + γ x – (α + ½ γ x)  
  → λ = MC – AC = ½ γ x 
 and the cost slope coefficient is calculated as: 
   γ = 2λ/x* = (2 × 200)/50 = 8  
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• Step IV:  
– Now calculate the value of the cost function intercept α 

using the AC information (AC=300 in the basic data set): 

  300 = α + (½ × 8 × 50) → α = 300 – 200 = 100 

• Step V:  
– Using the values for α and γ, the unconstrained quadratic 

cost problem is: 

 Max π(x) = 500x – α x – ½ γ x2 = 500 x – 100 x – ½ 8 x2 

   Therefore, ∂π(x)/∂x = 500 – 100 – 8 x 

Setting ∂π(x)/∂x = 0 → MR = MC and  

   8 x = 400 → x* = 50 

 

We have thus calibrated the model. 
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x (acres) x*=50 

$ 

AC=100 + 4 x 

MR=500 

MC=100 + 8 x 

PMP Calibrated Model 

0 

price 

100 
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Notes 

1. The unconstrained model now calibrates exactly in x and in π. 
2.  MC = MR at x = 50. 
3.  AC = 300 at x = 50. 
4. The cost function has been “tilted". 
5. Two types of information are used: observed x* and AC. 
6. The observed x* quantities need to be mapped into dual 

value space λ by the calibration constrained LP before it can 
be used. 

7. The model now reflects the ‘preferences’, or the opportunity 
costs, of the decision maker (landowner or farmer). 

8. The model is unconstrained by calibration constraints for 
policy/scenario analysis. 
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Three Stages to PMP Calibration 

1. Constrained LP model is used to generate dual values for 
both the resource (λ1) and calibration (λ2) constraints. 
(Resource constraints are the usual technical constraints.) 

2. The calibrating constraints dual values (λ2) are used, along 
with the data-based average cost function, to derive unique 
calibrating cost function parameters (αi and γi). 

3. The cost parameters are used with the base-year data to 
specify the PMP model: 

  Max Σi [pi yi xi – (αi + ½ γi xi) xi] 

  subject to A x ≤ b,     x ≥ 0. 

 

The resulting model calibrates exactly to the base solution and 
original constraint structure. 
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Two Crop Example 

Item WHEAT CORN 

Crop prices ($/bu) $2.98 $2.20 

Variable cost ($/acre) $129.62 $109.98 

Average yield (bu/acre) 69.0 bu 65.9 bu 

Gross margin ($/acre) $76.00 $35.00 

Observed allocation (acres) 

(Total acres = 5) 

3 ac 2 ac 

Source: Howitt (2005, Chapter 5) 
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 acres wheat 3 + ε 

$ 

Variable cost 

wheat = $129.62 

Revenue wheat 

= $2.98 × 69    

= $205.62 

λ1 

PMP Calibration: Two-crop Example 

0  acres corn 

λ1=$35 

2 + ε 

Variable cost 

corn = 

$109.98 

λ2 

Revenue corn 

= $2.20 × 65.9   

= $144.98 
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Mathematical Representation of Problem 

Max ($2.98×69 – $129.62)xW + ($2.20×65.9 – $109.98)xC 

s.t.  (1) xW + xC ≤ 5 

  (2)    xW ≤ 3.01 

  (3)    xC ≤ 2.01 

         xW, xc ≥ 0 

 

Solving in Excel gives:  

  xW=3.01, xC=1.99;   λ1=35, λ2=[41 0] 

Recall the gross margins: 

Wheat = $76/ac 

Corn = $35/ac 

NOTE: If you do not have the ε=0.01 in constraints (2) and 

(3), then constraint (1) would be redundant! 
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• The dual value on land λ1 = 35: dual values on the 
calibration constraint set λ2 = [41 0]. 

• Now solve the previous LP without the calibration 
constraints (2) and (3). Then xW=5, xC=0, the 
reduced gradient for corn is -41, and λ=76.  

• Recall the total cost function for land: 

  TC = (αk + ½ γk xk) xk,  

where k refers to an activity related to the 
calibration constraints. 

Then, 

  MC = αk + γk xk and AC = αk + ½ γk xk 
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Now 

 MCk – ACk = f ′(xo
k) – f(xo

k)/x
o
k = λ2k 

Then 

  (αk + γk xk) – (αk + ½ γk xk) = λ2k 

Solving gives: 

   γk = 2×λ2k/x
o
k  

 

Thus, for land in wheat 

   γW = (2 × 41)/3 = 27.333 
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Recall:  ACk = αk + ½ γk xk  

Then  

  αk = ACk – ½ γk xk  

Substituting the value of average variable cost per acre 
for wheat and the value of γW gives: 

  αW = 129.62 – (½ × 27.333 × 3) = 88.62 

Using the cost function parameters, the primal PMP 
problem becomes: 
 

 Max [($2.98×69)xW + ($2.20×65.9)xC  

  – (88.62 + ½×27.333xw)xw – 109.98 xc]  

 s.t.   xW + xC ≤ 5 

    xW, xc ≥ 0 



Calibrated Model Results 

• Calibrated model results are provided on the next slide 
for the Excel solver. It leads to the choice of 3 acres in 
wheat and 2 acres in corn (as observed). 

• We can also do some quick calculations: 

• MC(w=3) = αw + γw xw = 88.62 + (27.333 × 3) = 170.619 

• VMP(w=3) = pw yw – MC = (2.98 × 69) – 170.619 = 35.001 

• VMPC = pc yc – MC = (2.20 × 65.9) – 109.98 = 35 

• The calibration is pretty well exact!! 

 

NOTE: The diagram is provided after the Excel results. 





18-Oct-12 84 

 acres wheat 3 

$ 

AC = 88.62 +  

(½ × 27.333) xw 

pw yw = $205.62 

λ1 

PMP Calibrated Model 

0  acres corn 

λ1=$35 

2 

AC =  

$109.98 

pC yC =  

$144.98 

αw =  

88.62 

MC = 88.62 + 

27.333 xw 

129.62 

170.619 

Notice the model is calibrated for one PMP activity and one LP 
activity, and the constraint on wheat still prevents an optimal  

Reduced cost = $41 



Broadening the Calibration 
• Recall that, when we solved the wheat-corn problem 

with both resource and calibration constraints, we 

found: λ1=35, λ2=[41 0]; that is, λ2C = 0 

• The model was calibrated for one PMP activity, wheat, 

as it was more profitable than corn and the calibration 

constraint was binding. 

• Additional information on the MC function is needed 

for crops with no binding calibration constraint – these 

are then marginal crops (xm). When λ2 is zero for these 

crops, you cannot distinguish between AC and MC (and 

need outside information) 



Elasticity of supply 
• Define elasticity of supply: 

   ηs = (∂q/∂p) (p/q), where p is price 

• For our application: 

   ηs = (∂x/∂MC) (p/xo), where xo is observed 

• Given that ∂MC/∂x = γ, we find from calibration: 

 (1)  γ = p/(ηs × xo) 

 (2)   ηs = p/γ xo 

• Equation (1) can be used to determine γ if outside information 
(say from econometric studies) is available on ηs 

• Equation (2) can be used to find ηs if enough information is 
available (namely on λ2) to find the cost function and γ using the 
PMP method. 

• Given γ and λ2, we can find the intercept of MC as: 

  αk = ACk + λ2k – γk x
o

k 



• Returning to the wheat-corn example, clearly we need outside 

information on corn to be able to find its MC 

• Define an adjustment at xo that is added to the LP average cost to 

obtain a nonlinear cost function:  

  Adj = MC – AC = ½ γ xo = p/2ηs 

 The Adj value is the PMP term for the marginal activities, but, 

since Adj increases the marginal opportunity of the binding 

resources, it also changes all the non-marginal PMP values. 
 

       = λ2i + Adj 
 

How then do we proceed? We do not know beforehand which 

activities are in the xm and xk groups upon solving the stage I 

problem (with the resource and calibration constraints in place). 

i2
̂



• Assume prior information: ηsc = 2.25 

• Using the equation at the top of the previous slide for 

Adjm, the adjustment term for corn is: 

  Adjm=     = p/2ηs = (2.20 × 65.9)/(2×2.25) = 28.996 

 Note that we use total revenue per acre as the price 

because the adjustment factor is per acre. 

• It is also necessary to adjust the dual value of wheat: 

 

• The new λ values are used for both wheat and corn to 

determine the nonlinear cost functions for the final PMP 

problem: 

C2
̂
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Note that the dual value of land = 6.004 (= 35 – 28.996)  
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 acres wheat 

3+ε 

$ 

AC = 59.624 +  

(½ × 46.664) xw 

pw yw 
λ1 

PMP calibrated on all crops 

0  acres corn 2+ε 

138.976 

pC yC 

αw = 59.624 

MC = 59.624 + 

46.664 xw 

129.62 

199.616 

αC = 80.984 

λ1 

144.98 

205.62 

MC=80.984+ 28.996 xC 

AC=80.984+ 

½×28.996 xC 
109.98 



Example 

• Land use example of using PMP to calibrate 
land uses to existing ones is found here 

http://web.uvic.ca/~kooten/Training/CropPMP.gms
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APPENDIX 
Some PMP Theory 

• The general LP problem is: 

  Maxx   c′x  

  subject to  Ax ≤ b, x ≥ 0 

• Problem: When we solve this problem, we find that xm enter the 
final basis, while xk do not (even though xk are observed in 
practice). Hence, calibration is needed. 

• Modify the general LP as follows: 

  Maxx   c′x  

  subject to  Ax ≤ b, Ix ≤  xo + ε,  x ≥ 0 

where xo refers to observed activities and ε is added to the 
calibration constraints to prevent degeneracy. (I is identity 
matrix.) 
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The optimal basic solution to the above problem can be written as: 
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The k×1 vector of dual values for the binding 
calibration constraints (λ2) has the value 

  λ2 = ck – N′ B′ –1 cm 

The RHS of this equation is the difference between 
the gross margin of the calibrating activity ck and the 
equivalent gross margin obtained from the less 
profitable marginal cropping activities cm. 

Explanation: The xm activities are in the solution 
basis when there are no calibration constraints. Yet, 
the xk activities are observed in practice, so they 
must be the more profitable activities – the xm 
cropping activities must be less profitable. 
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This implies that λ2 is the marginal opportunity cost 
of restricting the calibrated activities by the amount 
needed to bring the marginal xm activities into the 
expanded basis. This cost of restricting the more 
profitable activities xk in the basis is similar to the 
familiar reduced cost term. 

Two things: 

(1) When land is the numeraire (Leontief production 
needs a common unit of measurement), the 
corresponding coefficients in N and B are one. 

(2) λ2 ≥ 0 as a marginal increase in the RHS upper 
bound on the more profitable activities (xk) will 
increase the value of the objective function. 
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Dual values associated with the binding calibration constraints (λ2) 

are independent of the resource and technology dual values (λ2).  

 

Upon calibration, an increasing nonlinear cost function, f(xk) is 

added to the objective function, so MC and AC of producing xk 

differ. Net return to land from xk now decreases as acreage 

increases, until an internal equilibrium is reached where they equal 

the opportunity cost of land set by the marginal crops xm. This is the 

“equimarginal” principle of optimal input allocation.  

 

If calibration constraints are removed and a nonlinear cost function 

for xk is added, the mathematical program becomes: 
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Formal proofs are found in: 

Howitt (AJAE, 1995; Howitt 2005, Chapter 5)  
 


