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Problem specification in matrix notation: 

 Max F(x) = c x + x′ Ω x 

 s.t.  A x  b 

   x ≥ 0 

where x′Ωx is the quadratic form. 

 

For a maximum, the objective function must be concave; 
for a minimum it must be convex 

 

Concave → Ω is negative definite or negative semi-definite 

 

Convex → Ω is positive definite or positive semi-definite 
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Example 
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S is a slack variable, as usual; (4) and (5) are 

complementary slackness conditions. 
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QP Conclusions 

If we maximize Z = – A1 – A2 , we have solved the original QP. 

Why?  

The new problem takes into account the optimization as the 1st-

order conditions are met already, plus we have shown the 

problem to be a maximum as Ω was negative definite. 
 

The advantage of QP is that a QP problem can be re-specified 

as an LP. Hence, QP problems are treated as separate 

options/solvers in Matlab and GAMS. In Excel, the problem 

needs to be set up as an LP as shown above (i.e., solving for the 

1st-order conditions). 



Price Endogenous Models 

Let Pd = α – β Qd  (demand function) 

 Ps = a + b Qs  (supply function) 

 

In equilibrium: 

 Pd = Ps or [α – β Qd] = [a + b Qs] 

and Qd = Qs 

 

It is important to recognize that quantity supplied must be equal 
to or greater than demand Qs ≥ Qd, but if Qs>Qd, then P* = 0, 
where P* is equilibrium price. 
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Thus: (–Qs + Qd )P* = 0 

 which is a Kuhn-Tucker condition. 
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Price 

0 

quantity 

demand 

supply 

Case where supply exceeds demand and price is zero. 



Price Endogenous Model (cont) 

To solve for the equilibrium quantity and price, the 
objective is to maximize the area under the demand curve 
minus the area under the supply function. Thus, we get 
the following QP problem:  

 

 Max  α Qd – ½ β Qd
2 – a Qs– ½ b Qs

2 

 s.t. Qd – Qs  0 

  Qd, Qs ≥ 0 

 

P* is the dual variable associated with the 1st constraint. 
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Spatial Price Equilibrium (SPE) or 

Trade Model 

• Production and/or consumption occur in spatially 
separated markets, each with its own supply and 
demand. Trade occurs if prices between regions 
differ by the amount of the transportation cost plus 
tariffs/taxes 

• Developed by Takayama & Judge (Spatial and 
Temporal Price and Allocation Models 1971) and 
Judge & Takayama (Studies in Economic Planning 
over Space and Time 1973) (both North-Holland) 
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Graphic representation of SPE models follows. 
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(a) Canada (b) International Market (c) United States 

Lumber quantity 

Price 

Pc 

0 q* qc
S 

a 

b 

Sc 

ES+ transportation costs 

PU 

Sus 

Dus 





0 0 q* 

Dc 

Canadian surplus = a + b 

U.S. surplus = α + β 

Canada-U.S. Trade in Softwood Lumber 
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ES = excess supply 

ED = excess demand 
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Canada-U.S. Trade in Softwood Lumber (cont) 
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ES = excess supply 

ED = excess demand 

(a) Canada (b) International Market (c) United States 
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Canada-U.S. Trade in Softwood Lumber (cont) 
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U.S. and Canadian prices differ by the transportation cost = 

PU
trade – PC

trade 
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Canada-U.S. Trade in Softwood Lumber (cont) 



(a) Canada (b) International Market (c) United States 
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Complete Canada-U.S. Lumber Trade Model 



SPE Model: Mathematical Formulation 

s.t. iqij ≤ qj, j   (region cannot export more than supply) 

 jqij  qi, i   (regional demands satisfied) 

 qi, qj, qij  0     (non-negativity) 

qij = sales by region j to region i,  

tij = unit transport cost from region j to region i,  

X selling regions; M buying regions (X≠M, i may equal j)  
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Solution Exists IF: 

1. Each region’s demand is downward sloping 

2. Each region’s supply is upward sloping 

3. Linear demand and supply → quadratic 

program 

4. Z is strictly concave in qi and qj, concave in 

qij, and bounded from above.  
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Solution exists and is unique in terms of qi 

and qj, but not necessarily for qij  

(see Takayama & Judge p.142) 



Example: 

Trade between Europe, Japan & U.S. (Ch 13, McCarl & Spreen) 

 

Supplies: Ps,U = 25 + Qs,U (Only U.S. & Europe   Ps,E 
= 35 + Qs,E supply commodity) 

 

Demands: Pd,U = 150 – Qd,U  

   Pd,E = 155 – Qd,E 

   Pd,J = 160 – Qd,J 

 

Transport costs: U.S.–Europe = 3 (both directions) 

   U.S.–Japan = 4 

   Europe–Japan = 5 
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GAMS file available here 

http://web.uvic.ca/~kooten/Training/SpatialTrade.gms










October 18, 2012 23 

    quantity shadow price 

US    .demand        46.400 103.600 

US    .supply        78.600 103.600 

EUROPE.demand  50.400 104.600 

EUROPE.supply  69.600 104.600 

JAPAN .demand  51.400 108.600 

 

Sales to → US EUROPE JAPAN 

from 

US  46.40     0  32.20 

EUROPE 0    50.40  19.20 

Objective value = 9193.60 

Reduced cost: US to Europe = -4 

     Europe to US = -2 

     All others = 0 



  Undistorted No-Trade  Quota         Tax/Subsidy 

Objective     9193.6  7506.3  8761.6  9178.6 

U.S. Demand      45.4    62.5    61.5      46.4 

U.S. Supply       9.6     62.5    63.5     78.6 

U.S. Price     104.6    87.5    88.5   103.6 

Europe Demand  51.4      60    40.7      50.4 

Europe Supply    68.6       60    79.3      69.6 

Europe Price     103.6      95   114.3    104.6 

Japan Demand      51.4       0     40.7      51.4 

Japan Price      108.6     160   119.3     108.6 

Scenario Analysis 


