Quadratic Programming

G. Cornelis van Kooten

REPA Group
University of Victoria

Problem specification in matrix notation:
Max $\quad F(x)=c x+x^{\prime} \Omega x$
s.t. $\quad A x \leq b$
$x \geq 0$
where $x^{\prime} \Omega x$ is the quadratic form.
For a maximum, the objective function must be concave; for a minimum it must be convex

Concave $\rightarrow \Omega$ is negative definite or negative semi-definite
Convex $\rightarrow \Omega$ is positive definite or positive semi-definite
$\max \quad 4 x+6 y-2 x^{2}-2 x y-2 y^{2}$

Example

s.t. $\quad x+2 y \leq 2$

$$
x, y \geq 0
$$

$c=\left[\begin{array}{ll}4 & 6\end{array}\right], x=\left[\begin{array}{l}x \\ y\end{array}\right], A=\left[\begin{array}{ll}1 & 2\end{array}\right], b=[2]$
$\Omega=\left[\begin{array}{cc}-2 & -1 \\ -1 & -2\end{array}\right],|-2|<0,\left|\begin{array}{cc}-2 & -1 \\ -1 & -2\end{array}\right|=3>0 \Rightarrow$ negative definite
$\mathrm{L}=4 x+6 y-2 x^{2}-2 x y-2 y^{2}+\lambda(2-x-2 y)+\mu_{1} x+\mu_{2} y$
(1) $\frac{\partial L}{\partial x}=4-4 x-2 y-\lambda+\mu_{1}=0$
(2) $\frac{\partial L}{\partial y}=6-2 x-4 y-2 \lambda+\mu_{2}=0$
(3) $\frac{\partial L}{\partial \lambda}=2-x-2 y \geq 0 \Rightarrow x+2 y-2 \leq 0$
(4) $\lambda(x+2 y-2)=0$
(5) $\mu_{1} x=0, \mu_{2} y=0$
(6) $x, y, \lambda, \mu_{1}, \mu_{2} \geq 0$

We convert this problem to one that can be solved using the simplex method :
Convert results (1)-(3) as follows:
(1') $4 x+2 y+\lambda-\mu_{1}+A_{1}=4$
(2') $2 x+4 y+2 \lambda-\mu_{2}+A_{2}=6$
(3') $x+2 y+S=2$
where A_{1} and A_{2} are artificial variables that are
the first to be driven out of the basic feasible solution.
S is a slack variable, as usual; (4) and (5) are complementary slackness conditions.

Restate the problemas:

$$
\min A_{1}+A_{2}=\max \left(-A_{1}-A_{2}\right)
$$

This implies :
$\max \quad Z=-10+6 x+6 y+3 \lambda-\mu_{1}-\mu_{2}$
s.t. $4 x+2 y+\lambda-\mu_{1} \quad+A_{1}=4$

$$
2 x+4 y+2 \lambda \quad-\mu_{2} \quad+A_{2}=6
$$

$$
x+2 y \quad+S \quad=2
$$

and $\left\{\begin{array}{l}\lambda S=0 \\ \mu_{1} x=0 \text { and } x, y, \lambda, \mu_{1}, \mu_{2} \geq 0 \\ \mu_{2} y=0\end{array}\right.$
To handle last three: either λ or S is nonbasic, μ_{1} or x, μ_{2} or y
\Rightarrow only one of each pair can be in solution at any time.

QP Conclusions

If we maximize $Z=-A_{1}-A_{2}$, we have solved the original QP . Why?

The new problem takes into account the optimization as the $1^{\text {st_ }}$ order conditions are met already, plus we have shown the problem to be a maximum as Ω was negative definite.

The advantage of QP is that a QP problem can be re-specified as an LP. Hence, QP problems are treated as separate options/solvers in Matlab and GAMS. In Excel, the problem needs to be set up as an LP as shown above (i.e., solving for the $1{ }^{\text {st}}$-order conditions).

Price Endogenous Models

Let $\quad P_{d}=\alpha-\beta Q_{d} \quad$ (demand function)

$$
\mathrm{P}_{\mathrm{s}}=a+b \mathrm{Q}_{\mathrm{s}} \text { (supply function) }
$$

In equilibrium:

$$
\mathrm{P}_{\mathrm{d}}=\mathrm{P}_{\mathrm{s}} \quad \text { or } \quad\left[\alpha-\beta \mathrm{Q}_{\mathrm{d}}\right]=\left[a+b \mathrm{Q}_{\mathrm{s}}\right]
$$

and $\quad Q_{d}=Q_{s}$

It is important to recognize that quantity supplied must be equal to or greater than demand $Q_{s} \geq Q_{d}$, but if $Q_{s}>Q_{d}$, then $P^{*}=0$, where P^{*} is equilibrium price.

Thus: $\left(-\mathrm{Q}_{\mathrm{s}}+\mathrm{Q}_{\mathrm{d}}\right) \mathrm{P}^{*}=0$
which is a Kuhn-Tucker condition.

Price

Case where supply exceeds demand and price is zero.

Price Endogenous Model (cont)

To solve for the equilibrium quantity and price, the objective is to maximize the area under the demand curve minus the area under the supply function. Thus, we get the following QP problem:

$$
\begin{array}{ll}
\text { Max } & \alpha \mathrm{Q}_{\mathrm{d}}-1 / 2 \beta \mathrm{Q}_{\mathrm{d}}^{2}-a \mathrm{Q}_{\mathrm{s}}-1 / 2 b \mathrm{Q}_{\mathrm{s}}^{2} \\
\text { s.t. } & \mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{\mathrm{s}} \leq 0 \\
& \mathrm{Q}_{\mathrm{d}}, \mathrm{Q}_{\mathrm{s}} \geq 0
\end{array}
$$

P^{*} is the dual variable associated with the $1^{\text {st }}$ constraint.

Spatial Price Equilibrium (SPE) or

 Trade Model- Production and/or consumption occur in spatially separated markets, each with its own supply and demand. Trade occurs if prices between regions differ by the amount of the transportation cost plus tariffs/taxes
- Developed by Takayama \& Judge (Spatial and Temporal Price and Allocation Models 1971) and Judge \& Takayama (Studies in Economic Planning over Space and Time 1973) (both North-Holland)

Graphic representation of SPE models follows.

Canada-U.S. Trade in Softwood Lumber

ES+ transportation costs

(a) Canada
(b) International Market
(c) United States

Canadian surplus $=a+b$
U.S. surplus $=\alpha+\beta$

Canada-U.S. Trade in Softwood Lumber (cont)

(a) Canada
(b) International Market
(c) United States

ES = excess supply
ED $=$ excess demand

Canada-U.S. Trade in Softwood Lumber (cont)

(a) Canada
(b) International Market
(c) United States
$\mathrm{ES}=$ excess supply
ED = excess demand

Canada-U.S. Trade in Softwood Lumber (cont)

(a) Canada
(b) International Market
(c) United States
U.S. and Canadian prices differ by the transportation cost $=$

$$
\mathrm{P}_{\mathrm{U}}^{\text {trade }}-\mathrm{P}_{\mathrm{C}}^{\text {trade }}
$$

Complete Canada-U.S. Lumber Trade Model

(a) Canada
(b) International Market
(c) United States

Cdn surplus $=a+b+c+g+e+d$
U.S. surplus $=\alpha+\beta+\phi+\delta+\gamma$

Cdn gain $=g=B+E$
U.S. gain $=\phi+\delta=A$

SPE Model: Mathematical Formulation

$$
\begin{aligned}
& \operatorname{Max}_{q_{i}, q_{j}, q_{i j}} Z=\sum_{i=1}^{M}\left(\alpha_{i} q_{i}-0.5 \beta_{i} q_{i}^{2}\right) \\
& \quad-\sum_{j=1}^{X}\left(a_{j} q_{j}+0.5 b_{j} q_{j}^{2}\right)-\sum_{i=1}^{M} \sum_{j=1}^{X} t_{i j} q_{i j}, \forall i, j
\end{aligned}
$$

s.t. $\quad \sum_{i} q_{\mathrm{ij}} \leq q_{\mathrm{j}}, \forall j$ (region cannot export more than supply)
$\sum_{j} q_{\mathrm{ij}} \geq q_{\mathrm{i}}, \forall i \quad$ (regional demands satisfied) $q_{\mathrm{i}}, q_{\mathrm{j}}, q_{\mathrm{ij}} \geq 0 \quad$ (non-negativity)
$q_{\mathrm{ij}}=$ sales by region j to region i,
$t_{\mathrm{ij}}=$ unit transport cost from region j to region i,
X selling regions; M buying regions $(\mathrm{X} \neq \mathrm{M}, i$ may equal j)

Solution Exists IF:

1. Each region's demand is downward sloping
2. Each region's supply is upward sloping
3. Linear demand and supply \rightarrow quadratic program
4. Z is strictly concave in q_{i} and q_{j}, concave in q_{ij}, and bounded from above.

Solution exists and is unique in terms of q_{i} and q_{j}, but not necessarily for q_{ij}
(see Takayama \& Judge p.142)

Example:

Trade between Europe, Japan \& U.S. (Ch 13, McCarl \& Spreen)

Supplies:

$$
\mathrm{P}_{\mathrm{s}, \mathrm{U}}=25+\mathrm{Q}_{\mathrm{s}, \mathrm{U}}
$$

$=35+\mathrm{Q}_{\mathrm{s}, \mathrm{E}} \quad$ supply commodity)

Demands:

$$
\begin{gathered}
\mathrm{P}_{\mathrm{d}, \mathrm{U}}=150-\mathrm{Q}_{\mathrm{d}, \mathrm{U}} \\
\mathrm{P}_{\mathrm{d}, \mathrm{E}}=155-\mathrm{Q}_{\mathrm{d}, \mathrm{E}} \\
\mathrm{P}_{\mathrm{d}, \mathrm{~J}}=160-\mathrm{Q}_{\mathrm{d}, \mathrm{~J}}
\end{gathered}
$$

Transport costs:
U.S.-Europe $=3$ (both directions)
U.S.-Japan $=4$

Europe-Japan $=5$
GAMS file available here

ARAMETERS
LIMITS (SOURCE) QUOTAS ON OUTGOING SHIPMENTS
SUBTAX (SOURCE) SUBSIDIES AND OR TAXES ON OUTGOING SHIPMENTS;
LIMITS (SOURCE) $=99999 . ;$
SUBTAX $($ SOURCE $)=0 . ;$

OSITIVE VARIABLES
SHIPMENTS (SOURCE, MARKET) AMOUNT SHIPPED OVER A TRANPORT ROUTE
SUPPLY (SOURCE) QUANTITY AVAILABLE AT EACH SOURCE
DEMAND (MARKET) QUANTITY REQUIRED BY DEMAND MARKET

ARIABLES
CSPS
TOTAL CONSUMERS AND PRODUCERS SURPLUS;

QUATIONS

TSURP
SUPPLYE (SOURCE)
DEMANDE (MARKET)
QUOTA (SOURCE)

TOTAL SURPLUS EQUATION
LIMIT ON SUPPLY AVAILABLE AT A SOURCE MINIMUM REQUIREMENT AT A DEMAND MARKET OUTGOING SHIPMENT QUOTA BY SOURCE;

SURP. CSPS $=E=$
SUM (MARKET, DEMANDEQ (MARKET, "INTERCEPT") *DEMAND (MARKET)
+0.5*DEMANDEQ (MARKET, "SLOPE") *DEMAND (MARKET) *DEMAND (MARKET))

- SUM (SOURCE, SUPPLYEQ (SOURCE, "INTERCEPT") *SUPPLY (SOURCE)
+0.5*SUPPLYEQ (SOURCE, "SLOPE") *SUPPLY (SOURCE) *SUPPLY (SOURCE))
- SUM ($(S O U R C E, M A R K E T), S H I P M E N T S$ (SOURCE, MARKET)
*(COST (SOURCE, MARKET) +SUBTAX (SOURCE) \& (NOT THERE (MARKET, SOURCE)))) ;

EMANDE (MARKET) . DEMAND (MARKET)

SUPPLYE (SOURCE) . . -SUPPLY (SOURCE)

$$
+\operatorname{SUM}(M A R K E T, S H I P M E N T S(S O U R C E, M A R K E T))=L=0 ;
$$

QUATIONS

TSURP
SUPPLYE (SOURCE)
DEMANDE (MARKET)
QUOTA (SOURCE)

TOTAL SURPLUS EQUATION
LIMIT ON SUPPLY AVAILABLE AT A SOURCE MINIMUM REQUIREMENT AT a DEMAND MARKET OUTGOING SHIPMENT QUOTA BY SOURCE;

CSURP. CSPS =E=
SUM (MARKET, DEMANDEQ (MARKET, "INTERCEPT") *DEMAND (MARKET)
+0.5*DEMANDEQ (MARKET, "SLOPE") *DEMAND (MARKET) *DEMAND (MARKET))
- SUM (SOURCE, SUPPLYEQ (SOURCE, "INTERCEPT") *SUPPLY (SOURCE)
+0.5*SUPPLYEQ (SOURCE, "SLOPE") *SUPPLY (SOURCE) *SUPPLY (SOURCE))
- SUM ((SOURCE , MARKET), SHIPMENTS (SOURCE, MARKET)
*(COST (SOURCE, MARKET) +SUBTAX (SOURCE) §(HOT THERE (MARKET, SOURCE)))) ;
EMANDE (MARKET) . . DEMAND (MARKET)
- SUM (SOURCE , SHIPMENTS (SOURCE , MARKET)) =L= 0;
UUPPLYE (SOURCE) . - -SUPPLY (SOURCE)
$+\operatorname{SUM}($ MARKET, SHIPMENTS (SOURCE , MARKET) $)=\mathrm{L}=0$;

UUOTA (SOURCE) .. SUM(MARKET§ (HOT THERE (MARKET, SOURCE))
,SHIPMENTS (SOURCE , MARKET)) =L= LIMITS (SOURCE);

10DEL TRANSPORT /ALL/;

OLVE TRANSPORT USING NLP MAXIMIZING CSPS;

```
parameter report(*,*,*);
parameter trans(source,market);
    report (market,"demand","quantity") = demand.l(market);
    report(source,"supply","quantity") = supply.l(source);
    report (market,"demand","price") = demande.m(market);
    report(source,"supply","price") = supplye.m(source);
    trans(source,market) = shipments.l(source,market);
```

disnlav rennrt..t.rans:
report (source, "supply", "price") = supplye.m(source);
trans (source, market) $=$ shipments.l(source,market);
display report, trans;
limits (source) =0;
OLVE TRANSPORT USING NLP MAXIMIZING CSPS;
report (market, "demand", "quantity") = demand. 1 (market);
report (source, "supply", "quantity") = supply.l(source);
report (market, "demand", "price") = demande.m(market);
report (source, "supply", "price") = supplye.m(source);
trans (source, market) $=$ shipments.l(source, market);
display report, trans;
limits (source) =99999;
limits ("us") = 2;
SOLVE TRANSPORT USING NLP MAXIMIZING CSPS;
report (market, "demand", "quantity") = demand. 1 (market);
report (source, "supply", "quantity") = supply.l(source);
report (market, "demand", "price") = demande.m(market);
report (source, "supply", "price") = supplye.m(source);
trans (source, market) $=$ shipments.l(source, market);
display report, trans;
limits (source) =99999;
subtax ("europe")=-1.;
subtax ("us")=1.;
SOLVE TRANSPORT USING NLP MAXIMIZING CSPS;
report (market, "demand", "quantity") = demand. 1 (market);
report (source, "supply", "quantity") = supply.l(source);
report (market, "demand", "price") = demande.m(market);
report (source, "supply", "price") = supplye.m(source);
trans (source, market) $=$ shipments.l(source, market);
display report, trans;

US \quad.demand	46.400	103.600
US .supply	78.600	103.600
EUROPE.demand	50.400	104.600
EUROPE.supply	69.600	104.600
JAPAN .demand	51.400	108.600

US .demand
US .supply
EUROPE.demand
EUROPE.supply
JAPAN .demand
quantity
46.400
78.600
50.400
69.600
51.400
shadow price
103.600
103.600
104.600
104.600
108.600
Sales to \rightarrow US EUROPE JAPAN from

US	46.40		0
EUROPE	0	50.40	32.20
E.20			

Objective value $=9193.60$
Reduced cost: US to Europe $=-4$
Europe to US $=-2$
All others $=0$

Scenario Analysis

Undistorted No-Trade Quota Tax/Subsidy

Objective	9193.6	7506.3	8761.6	9178.6
U.S. Demand	45.4	62.5	61.5	46.4
U.S. Supply	9.6	62.5	63.5	78.6
U.S. Price	104.6	87.5	88.5	103.6
Europe Demand	51.4	60	40.7	50.4
Europe Supply	68.6	60	79.3	69.6
Europe Price	103.6	95	114.3	104.6
Japan Demand	51.4	0	40.7	51.4
Japan Price	108.6	160	119.3	108.6

