Homework #4

Simulation and Optimization

Due: October 9, 2018

1. There is often more than one way to solve an optimization problem. Consider Question E2.4 on p.71: Consider the optimal escapement problem for salmon on a particular stream in Alaska. Suppose $x_{t+1} = S_t e^{\gamma(1-\frac{S_t}{K})}$, where $S_t = min[x_t, S^*]$ is escapement in period t, $h_t = max[0, x_t - S^*]$ is the allowed harvest in period t, γ is the intrinsic growth rate, and K > 0 is the carrying capacity of the stream. The net refvenue in period t is given by $\pi_t = ph_t - \frac{c}{2}(\frac{h_t^2}{x_t})$, where p>0 is the unit price for fish on the dock and c>0 is a cost parameter. The optimization problem is as follows:

$$\max_{S^*} \sum_{t=0}^{19} \beta^t \left[ph_t - \frac{c}{2} \left(\frac{h_t^2}{x_t} \right) \right]$$
s.t.
$$x_{t+1} = S_t e^{\gamma(1 - \frac{S_t}{K})}$$

$$S_t = min[x_t, S^*]$$

$$h_t = max[0, x_t - S^*]$$

when K = 300,000 (salmon), $\gamma = 1$, p = 5, c = 1, $x_0 = 100,000$ (salmon) and the interest rate is 2%. Suppose the initial policy is $S^* = 150,000$.

- (a) Using R, find the path of salmon stock, harvests, escapement and (discounted) profit in each period. (Essentially duplicate the excel results on p. 72 of the text. Note: The results will not be exactly the same.)
- (b) What is the value of S^* that maximizes the net revenue for this problem? That is, solve the problem using a Monte Carlo type simulation method in R. (I used 100 iterations with values of S^* between 2,500 and 250,000 and 40 periods rather than 20 in the text.)
- 2. Solve the problem using GAMS so that one gets an optimal harvest, stock and escapement in each period. How different are your answers?

3. Consider the dynamic open-access system and specify a catch per unit of effort (CPUE) production function so that one gets the following system of equations (Conrad, pp.86-87):

$$x_{t+1} = \left[1 + g - \frac{gx_t}{K} - qE_t\right]x_t$$
$$E_{t+1} = \left[1 + \eta(pqx_t - c)E_t\right]$$

Here g is the intrinsic growth rate, K is the carrying capacity, p refers to price, q is the catchability coefficient, c is the cost parameter, E is effort and x is the fish stock. For the following parameter values, reproduce the two curves in Figure 3.5 on p.87: c=K=1, p=200, q=0.01 and g=0.1. Let $x_0=0.5$ and $E_0=1$. For figure (a) let $\eta=0.3$, and for figure (b), let $\eta=1.0$.