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1 Introduction

Few empirical devices are as longstanding and ubiquitous to applied econometric practice

as the use of functional forms that lend themselves to loglinearization. Obvious examples

quickly come to mind, such as Cobb-Douglas functional forms

Yi = β0X
β1
i1 X

β2
i2 · · ·X

βK
iK (1)

or the statistical earnings function of labor economics,

Yi = ex
′
iβ ⇔ lnYi = x′

iβ, (2)

where Yi is wages and xi a vector of worker characteristics.

In a novel and influential contribution, Santos Silva and Tenreyro (2006, henceforth SST)

have argued that, when the model to be estimated is obtained as the logarithmic transfor-

mation of some primary model, OLS is inconsistent. Consequently (p. 644) “. . . it is not

advisable to estimate β from the log linear model. Instead, the nonlinear model has to

be estimated.” They advocate applying pseudo-maximum likelihood based on the Poisson

distribution, as developed in Gourieroux, Monfort, and Trognon (1984), and provide simu-

lation evidence demonstrating its superior finite sample performance relative to alternative

estimators, including nonlinear least squares (NLS). Their Monte Carlo simulations use the

gravity models of international trade as the data generating process, which are an applica-

tion of Cobb-Douglas functional forms. Their Poisson pseudo-maximum likelihood (PPML)

estimator has been further studied in SST (2010,2011), Head and Mayer (2014), and Fally

(2015) and has been implemented in both Stata and R.1

But the precise source of the inconsistency that PPML addresses is somewhat amorphous.

In their opening paragraph SST (2006) suggest that it arises from the property of the log

function that E(ln y) 6= ln E(y), but later (p. 641) indicate that the issues “. . . extend to a

broad range of economic applications where the equations under study are . . . transformed

by a nonlinear function.” Throughout the article they say that heteroskedasticity plays
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a role, inducing a correlation between the disturbance and the transformed regressors.

Whether this heteroskedasticity is conditional or unconditional is unclear in the theoretical

development, although their simulations include examples of both. Elsewhere (p. 644) they

suggest that, at least in some contexts, the issue is identification: “The problem is that

these parameters may not permit identification of the parameters of E[yi|x].”

So which is it, nonlinear variable transformations, heteroskedasticity, or identification?

Or some combination? Or are these just different interpretations or manifestations of a

common underlying phenomenon? Given that SST’s PPML estimator has become, in the

words of Fally (2015, p. 78), “A now widely-used strategy . . . ” for estimating gravity

models, it seems worth clarifying the econometric justification for abandoning nonlinearly

transformed regressions, not only in the gravity context but in other areas of application as

well.

My own view is that none of these is the most useful way of understanding the SST

inconsistency result and, in turn, the motivation for their PPML estimator. Instead it is

best understood as an interesting but nevertheless fairly straightforward implication of the

specification of the initial nonlinear model as the conditional expectation function (CEF)

of the dependent variable. Advancing this view requires that we begin by briefly reviewing

the standard theory of CEF models, treatments of which can be found in, for example,

Goldberger (1991) and Wooldridge (2010).

2 Background: The CEF model

Economic theory often provides little guidance about the form of the population distri-

bution from which data are drawn, so that randomly sampled data are treated simply

as i.i.d. Even so, in studying the determination of one variable Yi in relation to others

x′
i = [Xi1, Xi2, . . . , XiK ], theory or the economic context do sometimes suggest a suitable

functional form for the relationship. Following Davidson and MacKinnon (2004) it is con-

venient to denote this function by xi(β) in general, which permits nonlinearities in either

or both of the variables and coefficients; in the special case of linearity in the coefficients

this becomes xi(β) = x′
iβ.

Given i.i.d. sampling, all variables have marginal distributions that are invariant across

the drawings i, and so the moments and parameters of these marginal distributions are

constant across the observations. For example, the unconditional mean and variance of Yi
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might be denoted

E(Yi) = µ, V(Yi) = E(Yi − µ)2 = σ2, (3)

so that Yi is unconditionally homoskedastic. Unconditional heteroskedasticity would imply

independent but non-identically distributed drawings.

Of course, these unconditional parameters of the marginal distributions are typically

not the objects of empirical inquiry. Instead the researcher is interested in studying the

dependence among the variables given by xi(β), which is typically taken to be a specification

for the mean2 of Yi conditional on the other variables,

E(Yi|xi) = xi(β). (4)

This framework, in which the researcher has a priori knowledge of the conditional mean, is

a common paradigm in econometrics and is that adopted by SST.

2.1 An additive CEF disturbance

Although the statistical structure of the CEF model is entirely embodied in the specification

(4), it is nevertheless often stated in terms of a disturbance,

Yi = xi(β) + εi. (5)

However this CEF disturbance is simply defined as the discrepancy

εi = Yi − E(Yi|xi) = Yi − xi(β) (6)

and its properties follow by construction from this definition. These properties are well

known (e.g. Goldberger, 1991, p. 49–50; Wooldridge, 2010, sec. 2.2) but to facilitate the

comparison with SST it is useful to list them explicitly.

CEF Property 1: The disturbance εi has conditional mean of zero.

E(εi|xi) = E[(Yi − xi(β))|xi]

= E(Yi|xi)− E[xi(β)|xi]

= E(Yi|xi)− xi(β)

= 0 (7)

By the law of iterated expectations (LIE) it follows that εi also has zero unconditional

mean: E(εi) = 0.
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CEF Property 2: The disturbance εi is uncorrelated with any function of xi, say φ(xi):

cov[φ(xi), εi] = E[φ(xi)εi] = 0. (8)

This property carries with it the implication of correct model specification: it implies

that xi(β) is the true conditional mean, so that xi(β) fully accounts for the effects of

the explanatory variables xi on Yi.

CEF Property 3: As a special case of CEF Property 2 in which the function φ(xi) is set

to xi itself, we have

E(xiεi) = E[xi(Yi − xi(β))] = 0. (9)

These unconditional moment restrictions provide the basis for NLS estimation (or

OLS if xi(β) = x′
iβ), the conventional estimator under these assumptions.

Although, by CEF Property 2, arbitrary functions φ(xi) of the explanatory variables

in principle qualify as instrumental variables, they are irrelevant. Attempting to

construct a GMM estimator based on an expanded instrument set z′i = [x′
i, φ(xi)]

and moment conditions E[zi(Yi − xi(β))] = 0 merely reduces to NLS.

CEF Property 4: Our final implication is to note the lack of one. In contrast to Property

2, CEF Property 1 has no necessary implications for the higher order conditional

moments of εi, which are of the general form E[φ(εi)|xi]. Consider, for example, the

conditional variance V(εi|xi), which sets φ(εi) = (εi − E(εi|xi))2:

V(εi|xi) = E[(εi − E(εi|xi))2|xi] = E(ε2i |xi).

Other than yielding the simplified final expression, by itself the condition E(εi|xi) = 0

has no necessary implications for this conditional moment. Despite the unconditional

homoskedasticity (3), εi is conditionally heteroskedastic: its conditional variance varies

with xi and so is observation-specific.

Hence, although NLS is consistent, the default estimator for its variance should be one

that is heteroskedasticity-consistent. Conditional homoskedasticity would be an additional

assumption on the model for which there is generally no basis.
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3 Implications of Loglinearization

Distilled to its essence, SST’s critique of loglinearization seems to come down to the ob-

servation that, given the premise that the conditional mean E(Yi|xi) is some nonlinear-

in-coefficients function xi(β), linearizing it with a nonlinear transformation abandons the

CEF structure.

For example, in the case of the Cobb-Douglas functional form (1), the NLS estimator is

based on the moment conditions (9) in which

E(Yi|xi) = xi(β) = β0X
β1
i1 X

β2
i2 · · ·X

βK
iK .

By contrast, estimation of the loglinearized model by OLS uses the moments

E[zi(lnYi−lnxi(β))] where lnxi(β) = lnβ0+β1 lnXi1+β2 lnXi2+· · ·+lnβKXiK (10)

and sets the instruments to z′i = [1, lnXi1, lnXi2, . . . , lnXiK ]. SST’s point is that, in

relation to the initially specified nonlinear model, the moments (10) are entirely ad hoc and

nothing in the theory of the CEF model implies that they should be zero. The resulting

OLS estimators therefore have no desirable properties, least of all consistency. It is not

so much that the OLS estimators are biased—so are the NLS estimators of the nonlinear

model—but that their bias does not disappear asymptotically.

3.1 Restatement in terms of an additive ad hoc disturbance

These arguments can be restated in terms of a disturbance, which may have some inter-

pretive value. Let xi(β) be amenable to loglinearization and define a disturbance νi =

lnYi − lnxi(β), so that the transformed model is stated as

lnYi = lnxi(β) + νi. (11)

This ad hoc disturbance is not a CEF disturbance because, under the originally specified

model (4), lnxi(β) is not the conditional mean of the dependent variable lnYi:

E(lnYi|xi) 6= ln E(Yi|xi) = lnxi(β). (12)

Consistent with SST, in this respect the inconsistency of OLS applied to the loglinearized

model can be interpreted as an implication of the log function that E(ln y) 6= ln E(y), and

the same logic would apply to linearizations using other nonlinear transformations.
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Given that νi is not a CEF disturbance, none of the properties of a CEF disturbance

need hold. Specifically:

1. Neither the conditional nor the unconditional mean of νi need be zero, because a

derivation analogous to (7) does not go through,

E(νi|xi) = E[(lnYi − lnxi(β))|xi]

= E(lnYi|xi)− E[lnxi(β)|xi]

= E(lnYi|xi)− lnxi(β) 6= 0,

again because of the inequality (12). This would similarly be the case for lineariza-

tions based on other nonlinear transformations. It would also be true of conditioning

variables that are transformations of xi, such as zi = lnxi; in general, a researcher

cannot simply contrive some function φ(xi) to yield E[νi|φ(xi)] = 0.

2. There is no reason for the ad hoc disturbance νi to be uncorrelated with the explana-

tory variables xi or functions of them, so cov[φ(xi), νi] 6= 0. As already remarked in

connection with (10) there are, then, no conditions analogous to (9) on the moments

cov[φ(xi), νi] = cov[φ(xi), lnYi − lnxi(β)] (13)

on which to base estimation.

When a regression disturbance may be correlated with the regressors, the stock remedy

of empirical researchers is to seek instruments zi that are plausibly uncorrelated with

the disturbance. Estimation would then be based on moment conditions of the form,

in the present context,

cov[zi, νi] = cov[zi, lnYi − lnxi(β)] = 0.

The problem with this stock remedy is the availability of strong instruments. The far

more appealing alternative offered by SST is to instead return to the original nonlinear

model, but to estimate it by PPML instead of NLS.

3. There is no reason for the ad hoc disturbance νi to be conditionally homoskedastic,

but then of course neither is the CEF disturbance εi, by CEF Property 4. It seems

doubtful that it is helpful to interpret the absence of conditions on the moments (13)
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as somehow being attributable to this conditional heteroskedasticity.3 After all, the

conditional heteroskedasticity of εi does not invalidate the moment conditions (9) or

the NLS coefficient estimator that arises from them.

3.2 Restatement in terms of a multiplicative CEF disturbance

The CEF disturbance εi is conventionally defined so as to appear additively in the CEF

model (5), but to some extent this definition is arbitrary. Formally, the discrepancy be-

tween the dependent variable Yi and the conditional mean E(Yi|xi) = xi(β) could just as

legitimately be defined as multiplicative,

Yi = xi(β)ηi (14)

so that, in analogy with the definition (6), this multiplicative disturbance is implicitly

defined as ηi = Yi/xi(β).

This is the form of the model in which SST phrase some of their analysis, drawing on the

properties of ηi as they parallel those of the conventional additive CEF disturbance εi. In

particular, in analogy with CEF Property 1 that E(εi|xi) = 0, for xi(β) to represent the

conditional mean E(Yi|xi) it must be that E(ηi|xi) = 1 in order that

E(Yi|xi) = E[xi(β)ηi|xi] = xi(β) E(ηi|xi) = xi(β).

And similarly to CEF Property 1, it follows from the LIE that the unconditional mean is

also 1: E(ηi) = 1.

Now consider the loglinearized multiplicative model,

lnYi = lnxi(β) + νi where νi = ln ηi.

This is the model (11) and shows that the relationship between the ad hoc disturbance νi and

the multiplicative CEF disturbance ηi is νi = ln ηi. Some of our previous conclusions about

νi can be understood in terms of this relationship. Specifically, even though ln E(ηi|xi) =

ln 1 = 0, the conditional mean of νi = ln ηi is not zero, because the expected value of the

logarithm of a random variable is not the logarithm of the expected value:

E(νi|xi) = E(ln ηi|xi) 6= ln E(ηi|xi) = 0.

This nonzero mean of the disturbance νi in the loglinear model (11) has the implication

that, if lnxt(β) has an additive intercept, its value is not separately identified from the
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nonzero mean of νt. OLS yields an estimate of the intercept of the loglinear model only

because it imposes the false identifying restriction that the disturbance νi has zero mean.

The OLS intercept estimate cannot therefore be consistent for the true intercept, whatever

that may be. In relation to the interpretations offered by SST, then, in this limited sense

the inconsistency of OLS applied to a loglinearized regression can be interpreted as an

identification problem.

4 Can loglinearization be saved?

Is, then, the age-old practice among applied researchers of estimating loglinearized regres-

sions entirely discredited? Not necessarily: it depends on the researcher’s initial specification

of the CEF. The above chain of reasoning hinges entirely on the premise that the nonlinear

model is the CEF, so that loglinearization results in a regression for which the disturbance

is not a CEF disturbance.

For example, suppose that in the Cobb-Douglas case, instead of specifying

E(Yi|xi) = β0X
β1
i1 X

β2
i2 · · ·X

βK
iK , (15)

the researcher interprets the variable to be explained as lnYi and specifies its conditional

mean to be

E(lnYi|xi) = xi(β) = β0 + β1 lnXi1 + β2 lnXi2 + · · ·+ lnβKXiK .

Then the disturbance defined as εi = lnYi−E(lnYi|xi) = lnYi−xi(β) is a CEF disturbance.

Along with the other properties of CEF disturbances, this yields moment conditions of the

form (8). Setting the instruments to be z′i = φ(xi) = [1, lnx′
i], these conditions are

E[ziεi] = E[zi(lnYi − xi(β))] = 0,

which in turn yield the OLS estimator of the loglinearized equation.

Even so, in the case of gravity equations, and perhaps even Cobb-Douglas functions gen-

erally, it may well be that the nonlinear CEF (15) is the compelling specification. But this

may not be true of other functional forms amenable to nonlinear transformation. Consider

the statistical earnings function (2) of labor economics, which is routinely estimated in the

log-lin form

lnYi = x′
iβ + εi. (16)
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The underlying basis for this specification is that wages Yi are positive and have an empirical

distribution that is skewed to the right. This distribution is much better approximated by

lognormality than normality, so that lnYi is well-approximated by normality. Consequently

specifying the dependent variable in log form is likely to yield a disturbance that is close to

normally distributed, improving the likelihood that the actual finite sample distributions of

classical t and F statistics will be well-approximated by their namesake distributions. (Of

course, a convenient byproduct of the log-lin specification is that the β coefficients have

interpretations as semielasticities. But this is an incidental consequence of the choice of

functional form, not the justification for that choice.)

On this reasoning, were wages being studied in isolation their approximate lognormality

suggests the model lnYi = µ + εi, εi ∼ n.i.d.(0, σ2), where µ is the unconditional mean

E(lnYi). That is, the natural object of interest is the mean of the transformed dependent

variable, not that of the untransformed variable. By the same logic, when it is the relation-

ship of wages to worker characteristics that is being studied, the natural object of interest

is the conditional mean E(lnYi|xi) = x′
iβ, not E(Yi|xi). Hence it is the log-lin specification

(16) that constructs εi = lnYi −E(lnYi|xi) = lnYi −x′
iβ to be a CEF disturbance, in turn

yielding the moment conditions E(xiεi) = E[xi(lnYi − x′
iβ)] = 0.

5 Conclusion

Although the inconsistency result of Santos Silva and Tenreyro has other interpretations, I

have argued that it is most naturally and comprehensively understood in terms of the spec-

ification of the conditional expectation function of the dependent variable. In applications

where the nonlinear function is the compelling specification for the CEF, linearization by

a logarithmic or other nonlinear transformation has the implication that OLS estimation

of the linearized regression is inconsistent. The reason is simple: the disturbance of the

linearized regression is not a CEF disturbance and so does not have the standard properties

of CEF disturbances, in particular absence of correlation with the regressors. SST’s use

of gravity models of international trade to illustrate this situation is one such compelling

specification.

But this conclusion hinges on the initial specification of the CEF. There may be nonlinear

functional forms for which their linearized version can reasonably be taken to be the condi-

tional mean of the similarly-transformed dependent variable. In such cases the longstanding
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practice of OLS estimation of the linearized regression is innocuous, because the regression

disturbance is a CEF disturbance. (Although as usual inference should be done with the

appropriate robust covariance matrix estimator. For example, in the case of cross-sectional

sampling a CEF disturbance is conditionally heteroskedastic.) I have suggested the log-lin

statistical earnings functions of labor economics as an example.

Notes
1For the Stata implementation visit SST’s Log of Gravity webpage:

http://personal.lse.ac.uk/tenreyro/lgw.html

For the R implementation see the R package gravity v0.6 which offers a PPML routine as
one of its estimation options.

2A much less common alternative is that it is taken to be a specification for the condi-
tional median, which leads to quantile regression.

3The interpretation in terms of heteroskedasticity also seems to puzzle Head and Mayer
(2014, p. 172) who remark “SST frame the problem in terms of heteroskedasticity but this
begs the question of which error is not homoskedastic.”
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Implications for estimating marginal effects

When economists estimate a functional relationship between variables, they are often in-
terested in using the results to characterize the marginal effect on the dependent variable
Yi of each of the explanatory variables xi. Precisely what is meant by “marginal effect”
must be defined in the context of a model and, even given a model, there may be more than
one useful definition. Both the questions of model choice and definition of marginal effect
are distinct from actually estimating that marginal effect, however defined in the context
of whatever model.

When the model being estimated is a CEF (4) this marginal effect of the kth explanatory
variable is

∂ E(Yi|xi)
∂xik

=
∂xi(β)

∂xik
.

Because this is the marginal effect on the conditional mean, it is interpreted as the marginal
effect on an “average” or “typical” or “representative” value of Yi.

4

12


