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Among the most intuitive and longstanding notions about financial markets is that assets

have, in some sense, a fundamental value associated with long run equilibrium. Observed

prices may depart temporarily from this underlying value owing to short run transitory

forces.

The role of markets in revealing or “discovering” this fundamental value is called price

discovery in the asset pricing literature, and has been studied for assets as diverse as equities

and foreign exchange. Of particular interest is assets having both a spot or cash market

and a derivatives market, so that the fundamental value is jointly determined by both

markets. A natural question then becomes: what are the relative contributions of the spot

and derivatives markets to price discovery?

1 Introduction

This paper uses recent econometric developments to contribute to the literature studying

this question for commodity markets, the original home of derivative instruments—namely

futures contracts, which have long traded simultaneous with commodity spot markets.

We compare the standard modelling framework—the cointegrated vector autoregressive

(CVAR) model—with its generalization, the fractionally cointegrated vector autoregressive

(FCVAR) model of Johansen and Nielsen (2012, 2018), in studying price discovery using

the permanent-transitory decomposition of Gonzalo and Granger (1995). The methodology

follows Figuerola-Ferretti and Gonzalo (2010) and Dolatabadi, Narayan, Nielsen, and Xu

(2018). Whereas many studies have investigated price discovery using the CVAR model,

few have generalized this to permit the long memory that fractional cointegration allows, a

generalization that our results tend to endorse.

Several related analyses follow as natural adjuncts. First, as one dimension on which
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the statistical success of the CVAR and FCVAR can be assessed, their ability to forecast

spot and futures returns is compared. Second, their economic significance is evaluated by

comparing the profitability of trading strategies based on the two models. Portfolio returns,

optimal holdings, and Sharpe ratios are derived from a mean-variance utility framework.

Being a generalization of the CVAR, in principle the FCVAR is superior in the behavior it

permits. Nevertheless, we find that the CVAR outperforms the FCVAR in some cases.

To some extent our results serve as robustness checks on earlier findings, both with respect

to the sample period and the choice of commodities. Whereas the literature tends to focus

on the most heavily traded commodities in European and U.S. markets, we choose as our

unifying theme agricultural and mining commodities that are major products in Canada, in

terms of both production capacity and trading volumes. Canada is a global leader in mineral

production and ranks among the top five global producers of gold, nickel, potash, uranium,

diamonds, and platinum. The mineral sector contributes significantly to the Canadian

economy, accounting for 19% of exports and 5% of GDP (Mines Canada, 2019). Similarly,

agricultural commodities also play a crucial role in the Canadian economy. According to

Farm Credit Canada (2018), oilseeds (e.g. soybeans and canola), cereals (e.g. wheat and

oats), and meats (e.g. pork and beef) constitute 41% of the total value of Canadian exports

of agricultural commodities and food products. In 2018 the agricultural sector was Canada’s

third-largest export category, accounting for 11% of exports and roughly 6.8% of GDP.

Ten commodities are included in our empirical analysis. We find that either the spot

or futures market can dominate price discovery, depending on the commodity. Across the

commodities, the CVAR and FCVAR models yield fairly consistent stories about the relative

roles of the two markets. In terms of the profitability of trading strategies based on the

forecasts of these models, a couple of possibly surprising findings emerge. First, portfolio

returns from the CVAR model are slightly higher on average than those from the FCVAR.

And second, this result is insensitive to the level of investor risk aversion.

2 Econometric Methodology

Much empirical evidence supports modelling spot and futures prices as cointegrated I(d)

processes, where the univariate order of integration of the individual series is d = 1. The

standard framework for studying their joint evolution has therefore been the CVAR model;

Figuerola-Ferretti and Gonzalo (2010; henceforth FFG) is a prominent example. But al-
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though, in their univariate behavior, a unitary order of integration d = 1 for spot and futures

prices is the accepted specification, the nature of their joint evolution is less obvious. It may

be characterized by the long memory that can be modelled with fractional cointegration,

as in Dolatabadi, Nielsen, and Xu (2015,2016) and Dolatabadi, Nielsen, Narayan and Xu

(2018). That is, the order of cointegration b, where b can be fractional, may differ from the

shared univariate order of integration d = 1.

2.1 The FCVAR and CVAR Models

These distinctions can be captured with the FCVAR model of Johansen and Nielsen (2012,

2018), a generalization of the CVAR:

∆dXt = αβ′∆d−bLbXt +

k∑
i=1

Γi∆
dLi

bXt + εt. (1)

Here Xt = [st, ft] is the vector of (the logs of) spot and futures prices, L is the lag (or

back-shift) operator, and ∆ ≡ 1−L is the first-difference operator. The symbol Lb denotes

1−∆b which, for fractional b, is defined in the technical literature on fractional integration

(Johansen and Nielsen; 2012, 2018). In terms of the mechanics of working with this notation,

if b = 1 then L1 = 1−∆1 = 1− (1−L) = L. In the augmenting lags, the symbol Li
b means

(Lb)
i = (1−∆b)i.

The FCVAR nests within it the CVAR, the special case in which b = d = 1. For in this

case

∆d−bLb = ∆1−1(1−∆1) = 1− (1− L) = L

and

∆dLi
b = ∆1(L1)

i = ∆Li.

The FCVAR model (1) therefore reduces to the standard expression for the CVAR (for

example, equ. (25) of FFG):

∆Xt = αβ′Xt−1 +
k∑

i=1

Γi∆Xt−i + εt. (2)

Hence, with the exception of permitting distinct integration orders b and d, much of the

notation of the FCVAR model is as in the CVAR. In particular, k is the number of lags

needed to treat short term dynamics so that the disturbance εt is white noise.

With respect to the forces of long run equilibrium, in general β would be a matrix of

cointegrating vectors. In the special case of just two variables—in the present context the
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spot and futures prices X ′t = [st, ft]—and a cointegrating rank of r = 1 long run relationship,

β is a vector. Allowing for an intercept ρ, let the normalized cointegrating relationship be

st = β2ft + ρ,

Then the cointegrating vector is β′ = [1,−β2] and the error correction term in the CVAR

model (2) is (generalized trivially to permit the intercept ρ)

st − β2ft − ρ = β′Xt − ρ. (3)

The CVAR model assumes that a long run equilibrium relationship between the I(1) vari-

ables st and ft takes the form of this linear combination being I(0). In contrast, the FCVAR

model (1) with d = 1 permits this equilibrium error to be I(1−b). For b in the range (0, 1/2]

we have 1/2 ≤ 1 − b < 1, and the nature of this fractional cointegration is that the equi-

librium error is nonstationary although mean reverting. For b in the range (1/2, 1] we have

0 ≤ 1−b < 1/2 and the equilibrium error is stationary but with the long memory permitted

by fractional integration. As b→ 1 so that 1− b→ 0 this long memory disappears, in the

limit yielding an equilibrium error that is I(0)—the special case of the CVAR model.

Just as in the CVAR model, α is a vector of speed-of-adjustment coefficients. For a two-

equation model describing X ′t = [st, ft] this is α′ = [α1, α2], and these coefficients have the

usual interpretations. If the equilibrium error (3) is positive then st should adjust downward

(the first equation of the system should yield ∆st < 0) while ft should adjust upward (the

second equation of the system should yield ∆ft > 0). These directions of adjustment for

the dependent variable ∆Xt in response to previous-period disequilibrium imply that, in

the FCVAR model just as in the CVAR, we should find α1 < 0 and α2 > 0.

At its most elementary level, the basis for the hypothesized cointegrating relationship

(3) is the common sense observation that spot and futures prices track one another, as is

revealed by any plot of the series such as those of Figure 1. The more rigorous formulation

of this intuition is modern statements of the classic Kaldor-Working theory of storage, such

as that of Garbade and Silber (1983). FFG’s contribution was to formulate this theory in

the CVAR framework, within which the Gonzalo-Granger decomposition can be brought

to bear; the cointegrating relation (3) corresponds to FFG’s equation (7), the implication

of spot-futures parity. In this model the intercept ρ captures factors such as storage costs,

convenience yield, and cost to carry. Because convenience yield can be positive or negative,
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there is no a priori testable restriction on ρ. The restriction β2 > 1 implies a long run

equilibrium relationship characterized by backwardation (st > ft), while β2 < 1 implies long

run contango (st < ft). Of course, because the futures price is predominantly a forecast

of the future spot price, either of these can hold at various points in time, depending on

market conditions and expectations about the future. That is, although the parameters

β2 and ρ have interesting economic interpretations, these do not take the form of testable

restrictions the rejection of which would falsify the theory.

2.2 Price Discovery

Cointegration between spot and futures prices means that their long run evolution is driven

by a single stochastic trend, a stochastic trend that is the joint outcome of trading in the

spot and futures markets. What are the relative contributions of these two interconnected

markets to price discovery, the fundamental value represented this common stochastic trend?

Because the speed-of-adjustment vector α′ = [α1, α2] plays the same role in the FCVAR

as it does in the CVAR, the permanent-transitory decomposition of Gonzalo and Granger

(1995) can be used to investigate this question. To illustrate with the simplest case, consider

a two-equation CVAR with one cointegrating relationship. Gonzalo and Granger showed

that each variable can be decomposed into permanent and transitory components. The

permanent component is the common stochastic trend while, remarkably, the transitory

variation of each variable is its individual response to the equilibrium error. These individual

responses are governed by the speed-of-adjustment vector α.

The permanent component, the common stochastic trend, is interpreted as the commod-

ity’s underlying fundamental value that markets seek to discover. For the price vector

specified as X ′t = [st, ft], the first equation of the system describes the evolution of the

spot price st while the second describes the futures price ft. Consider the extreme case in

which the speed-of-adjustment vector is α′ = [1, 0]: α2 = 0 means that the futures price

does not respond to transitory departures from equilibrium, and instead is driven entirely

by its permanent component, the common stochastic trend. Hence the long run evolution

of prices is determined in the futures market. It is the spot market that, with non-zero α1,

responds to the short run disequilibrium captured by the equilibrium error, contributing

transitory variation to the long run evolution of prices. This transitory variation could be

due to factors such as, in the words of FFG (p. 158), “. . . bid-ask bounce, temporary order
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imbalances or inventory adjustments.”

Notice that, in addition to α having its usual speed-of-adjustment interpretation, accord-

ing to the Gonzalo-Granger decomposition α also captures the importance of transitory

factors in determining each price. It follows that its orthogonal complement α⊥, defined by

α′⊥α = α′α⊥ = 0, describes the opposite—the extent to which the permanent component

influences each price; equivalently, the extent to which each price reveals, or discovers, the

fundamental value. Because α⊥ is unique only up to a multiplicative constant, it is natural

to normalize its components to sum to one, so that they measure the relative shares in price

discovery. In the extreme example where α′ = [1, 0], this is α′⊥ = [0, 1], indicating that all

price discovery takes place in the futures market, none in the spot market.

All this was recognized and applied by FFG in using a CVAR to model commodity

markets. Dolatabadi, Narayan, Nielsen, and Xu (2018) recognized that, because the role of α

is the same in the FCVAR model, the approach extends naturally to fractional cointegration.

It is this set of tools that we apply.

2.3 Relationship to Earlier Literature

The recognition that the common stochastic trend is a natural measure of fundamental

value, and that the Gonzalo-Granger decomposition can be applied to obtain the relative

contributions of the markets to the discovery of that fundamental value, is a seminal insight.

It provides a remarkable example of how new methodological tools can not only advance

our ability to study empirical questions rigorously, but even alter our conception of what

those questions are and how they should be posed.

The historic approach to analyzing price discovery was cast in terms of lead-lag relation-

ships between spot and futures prices. If, for example, futures prices were found to lead

spot prices, the inference was that new information is embodied first in futures prices and

that they therefore contribute most to price discovery. For example, citing literature going

as far back as 1932, Garbade and Silber (1983, p. 289) remark that “The essence of the

price discovery function of futures markets hinges on whether new information is reflected

first in changed futures prices or in changed cash prices.”

Because futures prices embody expectations of future spot prices, in many markets futures

prices do indeed tend to lead spot prices. This is particularly so in commodity markets,

where the cost of futures trading is lower than for trading in the spot market. The con-
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ventional wisdom has therefore been that, especially for commodities, it is futures markets

that dominate price discovery.

This conception of price discovery gained traction with the widespread application of

Granger causality testing within CVAR systems which, of course, is really about timing

relationships. One example is Silvapulle and Moosa (1999), who studied the crude oil

market and found that linear causality testing reveals that futures prices lead spot prices,

but nonlinear causality testing reveals a bidirectional effect. They conclude that spot and

futures crude oil prices react simultaneously to new information, but that the futures market

plays the dominant role in price discovery.

This tradition continues today as one stream of the empirical literature. An example

is Peri, Baldi, and Vandone (2013), who study the U.S. corn and soybeans markets and

conclude (p. 402) that “. . . futures prices play a major role in price discovery.” The basis

for this conclusion is (p. 398) “The study of the causal relationship between spot and

futures prices . . . ” and “. . . the analysis of the ‘price discovery’ role of spot and futures

markets, defined as the lead-lag relationship and information flows between spot and futures

markets.”

However there are a couple of weaknesses with this approach. First, it yields no precise

quantitative measure of the relative roles in price discovery comparable to Gonzalo and

Granger’s α⊥. Second, and more fundamentally, it is a commonplace observation about

Granger causality that, because it is defined in terms of timing relationships, these can be

misleading as indicators of true causality—an example of the fallacy of post hoc ergo propter

hoc. The belief that timing relationships reveal price discovery may amount to essentially

the same fallacy.

The Gonzalo-Granger decomposition makes it possible to circumvent these ambiguities by

recasting price discovery, not in terms of timing relationships, but in terms of the common

stochastic trend shared by cointegrated spot and futures prices.

3 Data and Estimation

We study ten commodities that are important to the Canadian economy and heavily traded

enough that daily spot and futures data are available for substantial sample periods. These

include five agricultural commodities—soybeans, wheat, oats, live cattle, and lean hogs—

and five extracted commodities—platinum, iron ore, nickel, crude oil, and gold. We use daily
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nearest contracts from the Commodity Research Bureau (accessed via www.barchart.com).

For eight commodities the sample begins 1 January 2009; the exceptions are iron ore (19

February 2013) and nickel (16 December 2011). In all cases the sample period ends 1

September 2019. In addition to these spot and futures price series, we follow the standard

practice of using the three-month Government of Canada treasury bill rate, downloaded

from Statistics Canada, as the risk-free rate of return that would be available to a Canadian

investor.

3.1 Data Description

Table 1 summarizes some key features of our futures data, including the Barchart identifier

symbols, the exchanges on which the contracts are traded, and the sample start dates. Av-

erage daily volume and open interest are also shown, first for each commodity’s full sample

and then for a common subsample, the end-of-sample months of 2019. Volume is the average

daily number of contract trades, and varies dramatically across the commodities: futures

volume for the most heavily traded commodities, such as crude oil, gold, and soybeans, is

many times that of iron ore, oats, or nickel. This variation is paralleled in open interest, the

average number of contracts outstanding. A large open interest indicates active trading,

and so is a useful measure of market liquidity.

Turning to a comparison of spot and futures prices, Figure 1 provides time plots by

commodity and Table 2 reports descriptive statistics. At the level of casual inspection,

the plots reveal two compelling conjectures. The first is that, typical of prices in financial

markets, many of these spot and futures prices do not obviously exhibit trend-reverting

behavior, and so are likely driven by stochastic trends. That is, the natural null hypothesis

is that they are integrated processes, although in some cases possibly zero-drift ones. This

intuition is supported by the Dickey-Fuller tests in the final column of Table 2 which, for

both spot and futures prices and across all commodities, do not reject the unit root null at

anything approaching conventional significance levels.

Given the acceptance of univariate I(1) specifications, the second compelling conjecture

suggested by Figure 1 is that spot and futures prices are cointegrated: they clearly move

together, to the point of being indistinguishable in some of the graphs. (Spot prices are

plotted in blue, futures in red.) This cointegration is, of course, the basis for the CVAR

model (2) as the standard framework for analysis. We therefore turn to the application of
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this model and its generalization, the FCVAR.

3.2 Estimation Results

Table 3 reports estimation results for the CVAR and FCVAR models, which are obtained

with the Matlab package of Nielsen and Popiel (2018). For each commodity and model,

an appropriate lag length k is selected by a combination of testing and Schwarz’s Bayesian

information criterion, using Ljung-Box Q tests as a diagnostic to verify the absence of

residual autocorrelation. Whereas Dolatabadi et al. (2018) tended to find that the FCVAR

required fewer lags, and attributed this to the serial dependence permitted by a non-unitary

b, we did not particularly find this to be the case.

In the FCVAR model, the fractional parameter b is estimated to range between 0.591

(lean hogs) and 0.931 (iron ore). With the exception of iron ore, these estimates differ

from unity to an extent that is statistically significant, and so on this basis the CVAR

model is rejected. With respect to the point estimates, the conventional intuition is that a

higher value of b implies less memory in the error correction term and hence better market

efficiency. Yet some of our estimates are not entirely consistent with this intuition. Iron

ore, the least-traded commodity, yields the highest estimate of b at 0.931, while crude oil,

the most heavily traded, has one of the lower estimates at 0.669. Even so, the latter is more

consistent with the other estimates than the extraordinarily low value of 0.194 found by

Dolatabadi et al. (2018, Table 3) for crude oil, which was for the period March 1983–October

2012.

Although the CVAR model is rejected relative to the FCVAR, note that the estimates

of the cointegration coefficient β2 are, for any given commodity, usually very similar across

the two models, oats being the main exception. This is a manifestation of the asymptotic

(but not finite-sample) equivalence noted by Lasak (2008, p. 9) of the maximum likelihood

estimator of the cointegrating vector β in the two models. The cointegration coefficient β2

indicates whether the futures market is systematically in a state of backwardation (−β2 > 1)

or contango (−β2 < 1). For both the CVAR and FCVAR models, many of the estimates

differ little from the razor’s edge case of −β2 = 1 in which neither backwardation nor

contango dominates in the long run. The main exception is wheat, where both models yield

−β̂2 ≈ 1.5 and so suggest backwardation. The one commodity where the two models yield

quite different point estimates is oats: the CVAR model suggests backwardation (−β̂2 =
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1.230) while the FCVAR suggests contango (−β̂2 = 0.779).

Instead of being manifested in the cointegration coefficient, the statistically significant

difference between the CVAR and FCVAR models mainly shows up in the adjustment co-

efficients and the associated price discovery shares. Even so, the estimates are generally

consistent with short run adjustment of prices to bring their markets into long run equi-

librium. Both the CVAR and FCVAR models yield estimates of the speed-of-adjustment

coefficients that are predominantly negative for the spot price (α̂1 < 0) and positive for

the futures price (α̂2 > 0). Most of the coefficients violating this pattern are very close to

zero, and so their signs can easily be the outcome of sampling error. To the extent that any

importance is attached to unintuitive signs, however, the FCVAR model has more than the

CVAR.

Finally, estimates of the price discovery shares α⊥,1 and α⊥,2 are shown in the final two

columns of Table 3. These are only loosely “shares” in that, although their values are

normalized by requiring that they sum to unity, they are not constrained to be positive

fractions, and indeed some lie outside the range [0,1]. Nevertheless their values indicate

the relative importance of the two markets in price discovery. In this respect CVAR and

FCVAR models are fairly consistent, finding the spot market to be dominant for wheat,

platinum, iron ore, and gold, while the futures market is dominant for soybeans, live cattle,

lean hogs, and nickel. The two models differ for only two commodities: for oats the CVAR

model indicates that the spot market dominates, while the FCVAR suggests it is the futures

market. The reverse is the case for crude oil.

A comparison with other results in the literature shows that which market dominates

price discovery can change over time. A good example is soybeans which, according to both

the CVAR and FCVAR models, are dominated by the futures market, whereas Dolatabadi

et al. (2018) find it to be the spot market.

Of course, nothing requires that price discovery be dominated by one market; both the

spot and futures markets can contribute. But when, in our results, one market is dominant

according to its coefficient point estimate, that coefficient is generally strongly statistically

significant.
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4 Forecasting

Although our CVAR and FCVAR models yield sensible within-sample inferences, a rather

different criterion by which they can be judged is their forecasting ability. Here we consider

two dimensions of this: out-of-sample forecast accuracy, and the ability of our models to

yield portfolio profits in a mean-variance utility framework. The latter serves to gauge fore-

casting success in terms of economic significance rather than purely statistical significance.

4.1 Out-of-Sample Forecasting

To compare out-of-sample forecasting ability we re-estimate both the CVAR and FCVAR

models using, for each commodity, the first 75 percent of the sample. The remaining 25

percent of the sample is then forecasted recursively, each day updating the sample on which

the forecast is based with the most recent day’s observation. These forecasts are then

compared with the observed sample.

In asset pricing a common statistic for evaluating predicted returns is the out-of-sample

R2 (see, for example, equ. (1) of Campbell and Thompson (2008)) which, unlike a conven-

tional regression R2, can be negative. A positive (negative) out-of-sample R2 indicates that

the model forecasts have a smaller (larger) average mean square prediction error than the

historical average return.

The first four columns of Table 4 report these out-of-sample R2’s and show that the

models sometimes underperform historical returns: the out-of-sample R2 is negative. For

both the CVAR and FCVAR models, the spot prices for lean hogs and nickel are by far

the best forecasted. Overall, the forecasting performance of the two models is remarkably

comparable, the out-of-sample R2’s of the two being similar. And spot and futures prices

seem to be about equally difficult to forecast, in that there is little systematic tendency for

either model to consistently predict spot prices better than futures prices, or the reverse.

Although the out-of-sample R2’s suggest that the forecasting performance of the CVAR

and FCVAR models is broadly similar, a more rigorous comparison is possible. For this

purpose Table 4 reports two statistics, the relative root mean square error (RMSE) and the

CW statistic of Clark and West (2007). The relative RMSE is defined so that a negative

value favors the more general model—in our case, the FCVAR. And indeed this is the

pattern for the majority of commodities in both the spot and futures markets.

But to what extent is this statistically significant? The advantage of the CW statistic is
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that, unlike the other statistics of Table 4, it has a determinable sampling distribution, which

Clark and West (2007) showed to be asymptotically standard normal, an asymptotic result

that should easily hold for our sample sizes. The CW statistic takes the null hypothesis

to be that the more general model (in this case the FCVAR) yields forecasts that are no

better than the special-case model (the CVAR). The alternative hypothesis is that the more

general model is better. So a large CW statistic favors the more general model. Consistent

with our observations about the R2’s, Table 4 shows that this null is rejected at conventional

significance levels in only a few instances: the spot prices for soybeans, oats, lean hogs, and

nickel, and the futures prices for lean hogs and iron ore.

On balance, to the extent that the evidence favors the forecasting performance of one of

our models, it is the FCVAR. But it is hardly surprising that the more general model does

somewhat better; perhaps the greater surprise is how modest the improvement seems to be.

4.2 Profits in a Mean-Variance Utility Framework

Can the forecasts of our CVAR or FCVAR models be used to trade profitably? We now

consider portfolios constructed according to mean-variance utility, allowing investors to

trade dynamically in the sense that portfolios can be rebalanced daily. Daily rebalancing is

most likely to reveal profitable trading opportunities, because forecast accuracy deteriorates

at longer forecast horizons.

Applying the standard framework in the literature (for example, Marquering and Verbeek

(2004) or Dolatabadi et al. (2018)) investors are treated as holding two assets, one risky

and the other risk-free. The log returns between periods t and t + 1 are denoted rt+1 and

rf,t+1, respectively. In general the risky return rt+1 could be for either a spot or futures

position. However commodity spot markets tend to be dominated by producers and users of

the physical commodity. It is futures markets that provide the forum for a broader range of

traders to participate, enabling risk transfer. Hence futures markets have lower transactions

costs and are the principal vehicle by which financial investors trade. This explains why it

is futures markets that are often found to be the dominant contributor to price discovery.

For these reasons, we assume that investors who are trading dynamically with daily

rebalancing are using the futures market, and the risky return rt+1 is on a futures contract.

Let wt denote the proportion of the portfolio invested in this futures position, and let θ

denote the trading cost of altering this portfolio weight. The transactions cost of daily
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portfolio rebalancing is therefore θ|wt+1 − wt| and the return on the portfolio is

rp,t+1 = wt+1rt+1 + (1− wt+1)rf,t+1 − θ|wt+1 − wt|. (4)

Investors make their portfolio decisions wt+1 by maximizing mean-variance utility. The

standard utility function used in this literature is

U(rp,t+1) = Et(rp,t+1)−
1

2
γVart(rp,t+1). (5)

The parameter γ captures risk aversion, which is increasing in γ. One appeal of this utility

specification is that utility maximization yields a solution for the optimal portfolio weight

that is elegant in its simplicity:

w∗t+1 =
Et(rt+1)− rf,t+1

γVart(rt+1)
. (6)

Intuitively, the portfolio share invested in the risky asset, a futures contract, is directly

related to its expected return but inversely related to both the return variance and the

degree of risk aversion. Conveniently, w∗t+1 is unaffected by the transactions cost θ, which

enters the calculations only via the portfolio return (4).

The calculation of trading profits proceeds by first using the estimated CVAR or FCVAR

models to forecast one-day-ahead futures returns rt+1. Using this forecasted return, the

optimal portfolio weight (6) is calculated. This requires several additional inputs: a risk-

free rate of return rf,t+1, measured by the treasury bill yield; an estimate of the time-varying

variance Vart(rt+1), for which we follow the standard practice of using a GARCH(1,1) model;

and the risk aversion parameter γ. For the latter we follow Dolatabadi et al. (2018) in using

γ values of 3, 6, and 12 to gauge the sensitivity of the results to different degrees of risk

aversion. In addition to these informational inputs, the optimal weights are constrained to

lie in the range −0.5 ≤ w∗t+1 ≤ 1.5, which limits short selling and borrowing/leverage to

50% of the position.

How profitable ex post is the ex ante trading strategy embodied in w∗t+1? Applying w∗t+1

to the realized futures return rt+1, the actual portfolio return (4) is calculated. Only at this

step is the transactions cost θ needed. We adopt the value used by Dolatabadi et al. (2018)

based on their reading of the literature, θ = 0.000167 (that is, 0.0167% of the nominal value

of the re-weighting), which reflects the comparatively low cost of futures trading.

The results are shown in Table 5, reported as average annualized percentage excess re-

turns, with standard errors. Several regularities are evident. First, most are statistically
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insignificant, including all that are negative: for most commodities, neither the CVAR nor

the FCVAR model does dependably better than investing at the risk-free rate. But there

are exceptions: live cattle, lean hogs, nickel, and, to a lesser extent, iron ore all yield

significantly positive returns, regardless of model or level of risk aversion. For only two

commodities is there any substantive difference between the CVAR and FCVAR models:

for wheat the FCVAR model yields a significant return, while for oats it is the CVAR model.

But with this exception, perhaps the most striking aspect of Table 5 is the insensitivity of

the results across both models and levels of risk aversion; none of these conclusions is condi-

tional on the risk aversion parameter γ. And there is no evidence to support the conjecture

that incorporating fractional cointegration yields more profitable trading strategies. On the

contrary, the final row of Table 5 shows that, on average across the commodities, the CVAR

yields higher returns than the FCVAR.

What is it about the nature of these commodities that some have profitable trading

strategies, others not? A comparison with Table 1 shows that the most profitable strategies

tend to be associated with low trading volumes (oats, live cattle, lean hogs, iron ore, nickel),

while the absence of profitable strategies is associated with high volumes (soybeans, crude

oil, gold). The common-sense inference is that it is the relatively illiquid markets that offer

profitable trading opportunities; the more liquid the market, the fewer such opportunities.

These results are to a considerable extent consistent with previous research, but not

entirely. Dolatabadi et al. (2018) studied seventeen commodities, some the same as ours,

over the period March 1983 through October 2012. Like us, they found little difference

between the CVAR and FCVAR models, and dramatic differences in profitability across

commodities. They too obtained largely insignificant futures returns for soybeans, wheat,

and crude oil; but, unlike us, they found significant returns for the precious metals gold and

platinum.

Sharpe Ratios

Are any of these findings about profitability altered if risk is controlled for? A simple way of

examining this is to calculate Sharpe ratios, the ratios of the excess returns to their standard

errors. Table 6 reports these, calculated from the information underlying Table 5. Given

that Table 5 revealed little variation across degrees of risk aversion, Table 6 focuses on the

intermediate case of γ = 6. It shows that, for the most part, the essential conclusions from

14



Table 5 are unchanged. Half the Sharpe ratios are statistically insignificant, including all

that are negative. The results for the CVAR and FCVAR models are remarkably similar,

both yielding insignificant Sharpe ratios for soybeans, platinum, crude oil, and gold, yet

significant ones for live cattle, lean hogs, nickel, and, to a lesser extent, iron ore. The

FCVAR model yields modestly significant Sharpe ratios for wheat, the CVAR model for

oats. This is essentially the same pattern of statistical significance as in Table 5. And as

before, incorporating fractional cointegration does not yield a more profitable risk-adjusted

trading strategy: the final line of Table 6 shows that, on average across the commodities,

the CVAR model actually yields a slightly higher Sharpe ratio than the FCVAR.

5 Conclusions

The traditional approach to price discovery has been cast in terms of timing relationships.

In commodity markets, spot markets tend to be dominated by producers and consumers

of the physical commodity. Instead it is futures markets that are the vehicle by which the

much larger class of financial investors participate. Futures prices embody expectations of

future spot prices. Hence the conventional wisdom about commodity markets is that new

information is reflected most quickly in futures prices, which therefore tend to lead spot

prices. The typical finding has therefore been that the fundamental value of commodities

is primarily discovered in futures rather than spot markets.

This paper has explored the sensitivity of this conventional wisdom to recently developed

tools for studying price discovery, in particular the Gonzalo-Granger decomposition as im-

plemented by Figuerola-Ferretti and Gonzalo (2010). Instead of casting price discovery in

terms of timing relationships, it draws on the structure of cointegrated processes to char-

acterize the fundamental value of a commodity in terms of the common stochastic trend

shared by spot and futures prices. We have done this within the traditional CVAR frame-

work used by FFG, and within the fractionally cointegrated VAR of Johansen and Neilsen

(2012, 2018) as applied by Dolatabadi et al. (2018). As a variation on the tradition of

studying commodities important to the U.S. or European economies, we have concentrated

on a subset of agricultural and extracted commodities significant to Canada.

Our empirical results strongly reject a unitary order of cointegration for almost all these

commodities, supporting fractional cointegration. Even so, in other respects the two models

yield results that are, for the most part, not dramatically different. For most commodities
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the cointegrating vector relating spot and futures prices is essentially [1,−1], indicating

neither systematic backwardation nor contango. Dynamic adjustment to disequilibrium

largely conforms with standard intuition. And out-of-sample forecasting performance is

similar, as is the potential that the two models offer for profitable trading strategies.

Hence, although the difference between the CVAR model and its FCVAR generalization

is statistically significant, economic significance is more questionable; previous findings of

economically significant differences may not be robust to variations in the commodities and

sample periods. The generalization to fractional cointegration does not even reliably yield

a more parsimonious modeling of dynamics, as is revealed by the lag lengths of Table 3 that

we found necessary to adequately treat temporal dependence. In these respects, then, the

FCVAR model may not provide significant value added over the CVAR.

Another respect in which the two models are similar is their implications for price discov-

ery. Consistent with the conventional wisdom, for many commodities the futures market is

the dominant contributor to price discovery, or at least contributes substantially. But for

about half the commodities the spot market dominates, and in this there is considerable

consistency between the CVAR and FCVAR models.
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Table 3: CVAR and FCVAR Models of Commodity Spot and Futures Prices

Adjustment Price discovery
Lag Fractional Cointegration coefficients α shares α⊥

b,c

length parametera coefficienta

Commodity k b −β2 α1 α2 α⊥,1 α⊥,2

CVAR model:
Soybeans 6 1 1.074** −0.045 0.011 0.2069*** 0.7931***
Wheat 5 1 1.519*** 0.005 0.015 1.5611*** −0.5611***
Oats 11 1 1.230* −0.000 0.017 0.9753*** 0.0247
Live cattle 5 1 1.048*** −0.048 0.008 0.0821 0.9179***
Lean hogs 3 1 1.012 −0.035 −0.006 −0.2035 1.2035***
Platinum 4 1 1.000 −0.033 0.550 0.9439*** 0.0561
Iron ore 5 1 0.997 −0.034 0.184 0.8447*** 0.1553***
Nickel 0 1 0.999 −0.943 0.053 0.0528 0.9472***
Crude oil 2 1 1.000 −0.924 −0.400 −0.7622 1.7622***
Gold 1 1 1.000 0.205 1.172 1.2113*** −0.2113***

FCVAR model:
Soybeans 8 0.647*** 1.080** −0.321 −0.087 −0.3735 1.3735***
Wheat 6 0.911** 1.462*** 0.009 0.026 1.5399*** −0.5399
Oats 14 0.728*** 0.779* −0.158 −0.010 −0.0668 1.0668**
Live cattle 4 0.695*** 1.021** −0.247 0.010 0.0373 0.9627***
Lean hogs 6 0.591*** 1.025 −0.202 −0.182 0.0632 0.9368**
Platinum 3 0.745*** 0.998** −0.204 0.974 0.8266*** 0.1734
Iron ore 5 0.931 0.997* −0.032 0.237 0.8804*** 0.1196
Nickel 1 0.857*** 1.002 −1.242 −0.003 −0.0021 1.0021***
Crude oil 8 0.669*** 1.001 −0.899 2.273 0.7167 0.2833
Gold 1 0.909*** 1.000 0.232 1.356 1.2064*** −0.2064**

a Asterisks indicate whether coefficients differ from one at 10(*), 5(**), and 1(***) percent significance.
b Asterisks indicate whether coefficients differ from zero at 10(*), 5(**), and 1(***) percent significance.
c Shares are defined to satisfy α′α⊥ = 0 and to sum to one, which yields α⊥,1 = −α2/(α1 − α2) and α⊥,2 =
α1/(α1 − α2).
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Table 5: Percentage Average Annualized Excess Returns: Futures Markets with Daily Rebalancing

γ = 3 γ = 6 γ = 12

Commodity CVAR FCVAR CVAR FCVAR CVAR FCVAR

Soybeans 0.0017 −0.0059 0.0008 −0.0030 0.0004 −0.0015
(0.0041) (0.0123) (0.0020) (0.0061) (0.0010) (0.0031)

Wheat 0.0148 0.0378* 0.0074 0.0189* 0.0037 0.0094*
(0.0126) (0.0215) (0.0063) (0.0107) (0.0032) (0.0054)

Oats 0.1451** −18.4912 0.0726** −6.9155 0.0363** −3.8896
(0.0584) (29.0787) (0.0292) (18.8221) (0.015) (9.6521)

Live cattle 4.2353*** 4.2312*** 2.1176*** 2.1156*** 1.0588*** 1.0578***
(0.7586) (0.8068) (0.3793) (0.4034) (0.1896) (0.2017)

Lean hogs 20.4989*** 20.4067*** 10.2494*** 10.2034*** 5.1247*** 5.1017***
(1.2533) (1.2530) (0.6266) (0.6265) (0.3133) (0.3132)

Platinum −0.0023 −0.0022 −0.0011 −0.0011 −0.0006 −0.0005
(0.0020) (0.0019) (0.0010) (0.0010) (0.0005) (0.0005)

Iron ore 4.7256* 4.4948* 2.3628* 2.2474* 1.1814* 1.1237*
(2.6676) (2.5589) (1.3338) (1.2795) (0.6669) (0.6397)

Nickel 0.0014*** 0.0014*** 0.0007*** 0.0007*** 0.0004*** 0.0004***
(0.0001) (0.0001) (0.0001) (0.0001) (0.00004) (0.00004)

Crude oil −0.1339 −0.5447 −0.0670 −0.6936 −0.0335 −0.3794
(0.4762) (3.2410) (0.2381) (1.7284) (0.1190) (0.8719)

Gold −0.0015 −0.0015 −0.0008 −0.0007 −0.0004 −0.0004
(0.0012) (0.0011) (0.0006) (0.0006) (0.0003) (0.0003)

Average 2.9485 1.0126 1.4742 0.6972 0.7371 0.3022

Note: Standard errors are in parentheses. Asterisks indicate whether coefficients differ from zero at 10(*), 5(**),
and 1(***) percent significance.
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Table 6: Sharpe Ratios Under Intermediate Risk Aversion: γ = 6

Modela,b

Number of
Commodity forecasts τ CVAR FCVAR

Soybeans 655 0.0156 −0.0192
(0.0391) (0.0391)

Wheat 655 0.0459 0.0690*
(0.0391) (0.0391)

Oats 644 0.0980** -0.0145
(0.0395) (0.0394)

Live cattle 655 0.2181*** 0.2049***
(0.0395) (0.0395)

Lean hogs 655 0.6391*** 0.6364***
(0.0429) (0.0428)

Platinum 655 −0.0430 −0.0430
(0.0391) (0.0391)

Iron ore 402 0.0884** 0.0876*
(0.0450) (0.0450)

Nickel 461 0.3260*** 0.3260***
(0.0478) (0.0478)

Crude oil 655 −0.0110 −0.0157
(0.0391) (0.0391)

Gold 655 −0.0521 −0.0456
(0.0391) (0.0391)

Average 0.1325 0.1186

a Sharpe ratios are Ŝ = r̄/s, where r̄ is the average excess
return and s is the standard deviation of the excess return.
(By comparison, the standard errors of Table 5 are s/

√
τ .)

b Values in parentheses are standard errors calculated us-
ing the formula [(1 + Ŝ2/2)/τ ]1/2 from Jobson and Korkie
(1981, p. 893). Asterisks indicate whether coefficients dif-
fer from zero at 10(*), 5(**), and 1(***) percent signifi-
cance.
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