Chapter 22
Non-Linear, First-Order Differential Equations
In this chapter, we will learn:

1. How to solve nonlinear first-order dif-
ferential equation?

2. Use of phase diagram in order to under-
stand qualitative behavior of differential
equation.

Autonomous Differential Equation
The initial-value problem for an autonomous,

nonlinear, first-order differential equation has
the following form:

y=g(y(t)) & y(to) = yo (22.1)

dg(y) ¢, d*g(y)
90) g Lol) 4,

where



Phase Diagram

Although, it is known that solution to

(22.1) exists under the condition that d%—(yy)
is continuous in the neighborhood around ¢,
in most cases it is not possible to derive the
explicit solution. Often qualitative proper-
ties of the differential equation are derived by
plotting it. Such plots are known as phase
diagram.

Steps in Drawing Phase Diagram

Let the differential equation

y=g(y(t)). (22.2)

Our goal is to plot ¢ or g(y(?)).

Step 1 Take g or g(y(t)) on y-axis and y(¢) on
X-axIs.



Step 2

Step 3

Take the first and second derivative of gy

or g(y(t)) with respect to v, dil—(yy) and
2
%(Qy). This gives you the shape of the

curve (increasing, decreasing, concave, c-
onvex).

Derive the steady-state points by setting

y=g(y(t)) = 0. (22.3)

Steady-state or equilibrium points are t-
he points at which the curve of 3 or g(y)
intersects the x-axis. There can be more
than one steady-state point (multiplicity
of equilibria).

Given that there can be multiplicity of

equilibria, it raises the question which steady-
state points are stable and which are unsta-

ble.



Stability Analysis

Stability analysis tells us about the con-
vergence property of the differential equation.
A steady state point is stable, if the differen-
tial system converges to that point. Other-
wise, 1t is unstable.

Theorem 22.2: A steady-state equilib-
rium point of a nonlinear first-order dif-
ferential equation is stable if the deriva-
tive le—z < 0 at that point and unstable if
the derivative is positive at that point



Solow or Neo-Classical Growth Model

The model relates long run per-worker con-
sumption and growth rate in output to sav-
ing rate, work-force growth rate, and techni-
cal progress.

Assumptions

1. Constant returns to scale production te-
chnology, Y = F(K, L)

2. Diminishing Marginal Productivity of C-
apital

3. Constant Rate of saving (s), thus total
savings is S(t) = sY (¢),

4. Constant labor force growth rate (n),
5. Constant depreciation rate (9).

6. No technical progress (Temporary Ass-
umption)



Implications of the Model

1. In the long run economy reaches a stable
steady state equilibrium.

2. Per-Worker Consumption (c¢) in the long
run depends on s,n, and d. There will
be no growth in ¢ in the long run.

3. Ultimately, an economy will grow at the
rate of work-force growth (n).

Let I(t) be gross investment, then by def-
inition, growth rate of capital stocks is

K =1(t) — §K(t).

Since in equilibrium S(t) = I(t), we have

K =sY(t) — 0K (t).
Now define capital-labor ratio as, k =

Then, given constant returns to scale, per
worker output, y(¢) can be written as

K
7
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— = = sy(t) — or(t).

K sY(t)—86K(t)
t

L(?) L(?)
K L
RO 0

Combining the above two equations, we get
differential equation in the capital-labor ratio
wh- ich characterizes Solow growth model.

k=sf(k(t)) — (0 +n)k(t).



Nonautonomous and Nonlinear Equation

The general form of the nonautonomous, fi-
rst-order differential equation is

y=[f(ty). (22.5)

The equation can be a nonlinear function of
both y and t. We will consider two classes of
such equations for which solutions can be eas-
ily found: Bernoulli’s Equation and Sep-
arable Equations.

Bernoulli’s Equation

The differential equation

Y+ a(t)y =b(t)y"™, n#0or 1 (22.6)

is known as Bernoulli’s Equation. Assume
that a(t) and b(f) are continuous on some
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time interval 7. Now we can transform (22.6)
as follows:

Step 1 Multiply both sides of (22.6) by y~™. We

end up with
y "y 4 a(t)yt " = b(t). (22.7)
Step 2 Now define a new variable x = y!™".

Taking the derivative of x with respect
to time ¢, we get

t=(1—n)y "y. (22.8)

Step 3 Using the definition in step 2, differential
equation (22.7) can be written as

4+ (1 —n)a(t)r = (1 —n)b(t). (22.9)
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This is first-order linear nonautonomo-
us differential equation, which can be so-
lved by using techniques learned in the
previous chapter.

Step 4 Once we have solved for z(t), we make
use of definition in step 2, z = y'~" and

derive the solution for y(t).

Remark: This procedure is valid only when
y(t) # 0 forall t € T.
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Solow Growth Model With Technical Change

Earlier, we considered Solow growth mo-
del without technical change. Now, we in-
troduce technical change. Now suppose that

production depends on capital, k, and effec-
tive labor, 'L defined as

EL(t) = E(t)L(t)

where F(t) is a measure of technology. Sup-
pose E(t) evolves as follows

E = \E(t), A> 0.

Such technical change is called labor aug-
menting. Production function is

Y(t) = F(K(t),EL(t)) = K(t)*EL(t)" .

Rest of the model is identical to the previous
one. Now define capital-effective labor ratio
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as, K = % Then, given constant returns to

scale, output per effective labor unit, y(¢) can
be written as

K EL
= — K
EL(t) EL(t)
Combining the above two equations, we get
differential equation in capital-effective labor
ratio which characterizes Solow growth model

with technical change.

K

k4 (0 + X+ n)k(t) = sk(t)”.
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As we can see that it is a Bernoulli equation.
In order to solve this multiply both sides by
£k~ and define x = k'~®. Then the above
equation can be transformed into

T+ 0+ A+n)(1 —a)z(t) =(1—a)s.
The solution is

o S
S+ A+n

4 Cexp—(5+)\+n)(1—a)t .

x(t)

In terms of k(t), we get

k(t) =

1

l1—«

S
O —(04+2A4+n)(1—a)t
[5 +A+n T Cexp

Steady-state k(t) is given by

_ S e
m_[5+A+n] |
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Implications

1. Ultimately economy reaches steady-state
just as in case of no technical progress.

2. At the steady state output, Y, consump-
tion, C', and capital stock, K, grow at
the rate of A + n.

3. At the steady state per-worker output,

}L/, consumption per Worker ¢ and cap-

y I,
ital stock per worker ogrow at the rate
of \.

7L’

14



Separable Equations

The nonautonomous equation is

= f(ty). (22.10)

f(t,y) can always be written as the ratio of
two other functions, M (¢,y), and —N(t,y).
We can then rewrite (22.10) as

M(t,y) + N(t, )5 = 0. (22.11

Definition : A non-linear, first-order
differential equation is separable if
M (t,y) = A(t), a function of only ¢, and
N(t,y) =y, a function of only y. A sep-
arable, nonlinear, first-order differential
equation can therefore be written as

A(t) +b(y)y = 0. (22.12)

(22.12) can be solved by direct integration.
(22.12) can be written as
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A(t)dt + b(y)dy = 0. (22.13)

This equation can be integrated directly to
obtain

/ A(t)dt + / by)dy = C. (22.14)
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