Studies of polyhalide ions in aqueous and non-aqueous solution by electrospray mass spectrometry

J. Scott McIndoe and Dennis G. Tuck †

Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, UK CB2 1EW

Received 15th August 2002, Accepted 20th November 2002 First published as an Advance Article on the web 9th December 2002

Solutions of $I_2 + X^-$ (X = Cl, Br, I. NCS) in both water and acetonitrile have been studied by electrospray mass spectrometry in order to identify the anions present. For I_2/I^- , there is no evidence of the I_5^- anion proposed earlier to explain deviations from ideality in the formation of I_3^- in aqueous solution; rather, the equilibrium $I_3^- + I^- \rightleftharpoons I_4^{2^-}$ is shown to be compatible with the mass spectrometric results, and with the earlier literature. With Cl⁻, Br⁻ and NCS⁻, both classes of solution contain members of the series $X_3^- \rightleftharpoons X_2I^- \rightleftharpoons XI_2^- \rightleftharpoons I_3^-$; this is ascribed to rapid redistribution processes rather than to the redox and/or photochemical reactions suggested by earlier workers. There is little qualitative difference between aqueous and acetonitrile solutions, except that aqueous I_2/Cl^- systems contain the ICl₄⁻ anion, whose decomposition in the gas phase produces the previously unknown ICl₃⁻⁻ radical anion. No I_2X^- adducts were identified when X = OH⁻, NCO⁻, N₃⁻⁻ or NO₂⁻.

The solid state and solution phase chemistry of polyhalide anions has been studied for many years.¹⁻⁴ The stable salts which have been prepared, and in many cases characterised crystallographically,⁴ include those of X_3^- (X = Cl, Br, I), I_n^- (n = 5, 9), I_n^{2-} (n = 4, 8, 9) and I_{16}^{4-} . Mixed halogens species are also known, and several XY₂⁻ salts have been reported, as have those of higher XY_n⁻ species. The appropriate description of the bonding in the X₃⁻ ions has prompted considerable discussion, since both X₂ and X⁻ have closed shell configurations. A paper by Landrum, Goldberg and Hoffmann⁵ reviews earlier work, and reports calculated values for the bonding energy in X₃⁻ (X = Cl, Br, I) and I_2X^- (X = Cl, Br) anions.

The stability of X_3^- and XY_2^- anions in solution has been widely investigated by UV-vis spectrophotometry, by a variety of electrochemical techniques, and by solubility and two-phase distribution measurements.¹ In aqueous solution, the stability constants are in the order $I_3^- > Br_3^- > Cl_3^-$, but this order is reversed in aprotic organic solvents; in addition, the latter values are solvent dependent and are higher than those in aqueous solution by several orders of magnitude.

Since there is little direct evidence on the species present in solutions of polyhalides, the interpretation of spectroscopic and other investigations has largely depended on analogies with known solid state structures. We now report studies of a variety of solutions containing X_3^- , X_2Y^- and related anions, using electrospray ionisation mass spectrometry (ESI-MS). With one exception (see below), instrumental limitations, related to the possible corrosion of the instrument, restricted the work to anions derived from elemental iodine.

Experimental

General

Iodine, salts of alkali metals and substituted ammonium cations were Reagent Grade, and were used as supplied. Stock solutions in either water or acetonitrile were prepared gravimetrically, and diluted as appropriate. An aqueous solution of I_2 was prepared by equilibrating the solid with water at room temperature over several days, and then carefully collecting the solution phase. Acetonitrile was used without further purification.

†Permanent address: Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4. E-mail: dgtuck@uwindsor.ca

Mass spectrometry

Mass spectra were collected using a Micromass Quattro LC triple quadrupole instrument. The nebuliser tip was set at 3100 V and 100 °C, and nitrogen was used as the bath gas. Samples were introduced directly to the source at 2–4 μ L min⁻¹ *via* a syringe pump. The cone voltage was set at 20 V in order to minimise fragmentation. The MS/MS experiment was carried out using argon as the collision gas.

Results and discussion

Aqueous solutions

(i) Aqueous iodine. A saturated solution of I_2 (concentration at 25 °C = 1.33 mM, following Ramette and Sandford)⁶ gave an ESI mass spectrum in which I⁻ was the only detectable iodine species. A repeat spectrum taken 2 months later showed additional traces (<3%) of I_3^- and I_2^- (see below), but neither IO⁻ nor IO₃⁻ was detected, showing that hydrolysis was negligible over this length of time.

(ii) Aqueous $I_2 + KI$. The system

$$I_{(aq)}^{-} + I_{2(aq)} \rightleftharpoons I_{3(aq)}^{-}$$
(1)

is amongst the most frequently studied of aqueous phase equilibria, with a history of publications (see ref. 1) going back about 100 years.⁷ The results obtained by a variety of experimental methods have been reviewed by Popov,¹ and for the present purposes we use the thermodynamic parameters obtained by Daniele;⁸ K_3 at 298 K = 723, $\Delta H^\circ = -19.9 \pm 1.7$ kJ mol⁻¹. Experiments involving distribution or solubility measurements necessarily involve higher concentrations than do spectroscopic studies, and there are marked deviations from these values under such conditions, and this has been attributed to the competing formation of higher species.^{5,9} We return to this point below.

Fig. 1 is a typical negative ion ESI-MS over the range m/z = 200-700 from an aqueous solution of $I_2 + I^-$, molar ratio 1 : 9. The dominant features correspond to I^- (not shown), I_2^- (or I_4^{2-} ; see below) and I_3^- , together with KI_2^- and $K_2I_3^-$. The assignments are based on m/z values, and on comparison of the peak pattern with that calculated from the known isotopic composition. Similar spectra were obtained over a wide range of mole ratios of 1 : 90 - 1 : 09, with no qualitative change in the species detected. Substitution of Et_4NI for KI caused no

Fig. 1 ESI-MS of an aqueous solution of I_2 (0.56 mM) + KI (5 mM), over the range m/z = 200-700.

change in the $I^-/I_2^-/I_3^-$ portion of the spectrum. The appearance of cluster ions of the type $[M_nX_{n+1}]^-$ in solutions of alkali metal salts MX is a well-studied phenomenon,¹⁰ and such clusters are in fact often used to calibrate mass spectra;¹¹ aggregates of quaternary ammonium cations form in analogous fashion.¹² Of special interest is the highest species observed in this experiment at m/z = 508.6, unambiguously identified as HI₄⁻, the protonated form of the I₄²⁻ anion.

In the first place, these results confirm the reality of eqn. (1), if such confirmation be needed, but more importantly raise other issues. The first concerns the existence in aqueous solution of I_5^- , which has been postulated to explain deviations from the ideality of eqn. (1) at high iodide concentrations. Partial support for this comes from the existence of crystalline salts of this anion,¹³ whose structure can be described as $[I(I_2)_2]^-$. The processes by which this might be formed in aqueous solution are either

or

$$2I_2 + I \longrightarrow I_5$$

$$I_3^- + I_2 \longrightarrow I_5^- \tag{3}$$

(2)

each of which implies the co-existence of I₂ and either I⁻ or I₃⁻. These seem unlikely circumstances, since the presence of excess KI (*e.g.* 0.5 M KI + 0.67 mM I₂) must cause the formation of I₃⁻ by eqn. (1), thereby lowering the concentration of I₂. The derived equilibrium constant⁶ for eqn. (3) is *ca.* 10, much smaller than K_3 (see above), and hence formation of I₅⁻ by either eqn. (2) or (3) should be decreasingly probable with increasing iodide concentration. In fact, the formation of I₅⁻ should be favoured by the co-existence of both I₂ and I₃⁻, a situation which holds only at low I⁻ concentrations. Fig. 2

Fig. 2 ESI-MS of an aqueous solution of $\rm I_2~(0.56~mM) + KI~(0.05~mM).$

shows the ESI-MS of a solution in which the initial $I_2 : I^-$ mole ratio was 1 : 9. Calculations using $K_3 = 723$ for eqn. (1), and the constant $K_5 = 10$ suggested by Ramette and Sandford,⁶ show that the equilibrium concentrations should be $[I_3^-] \sim 1.5 \times 10^{-5}$ M, and $[I_5^{2-}] \sim 10^{-7}$ M. The spectrum in Fig. 2 shows no evidence of I_5^{2-} (m/z = 634.5) even at this calculated ratio of $[I_5^{2-}] : [I_3^-] \sim 0.02$, and we therefore conclude that the deviations found by Davies and Gwynne⁹ cannot be explained in terms of I_5^{2-} . We suggest that the presence of the peak with m/z = 253.8in the ESI-MS offers a more probable explanation for the deviations from ideality observed by Davies and Gwynne,⁹ Ramette and Sandford,⁶ and earlier workers.⁴ This anion is identified as I_4^{2-} , rather than I_2^{-} . Since iodine is mono-isotopic, it is not possible to distinguish between these species massspectrometrically.

It is first necessary to eliminate the formation of I_2^- by the ionisation of I_2 in the collector core of the mass spectrometer. Such a process is possible in principle; the electron affinity of I_2 has been estimated ¹⁴ at +164 ± 50 kJ mol⁻¹, but the absence of the m/z = 253.8 peak in the ESI-MS of an aqueous solution of I_2 argues against this. Another route to I_2^- in the gas phase might be

$$I_3^- \longrightarrow I_2^- + I^{\bullet} \tag{4}$$

$$\rightarrow \frac{1}{2}I_2$$
 (5)

The energetics of eqns. (4) + (5) can be estimated from the sequence in Scheme 1 from which ΔE for the overall process

I

$$I_{3}^{-} \rightarrow I_{2}^{-} + \frac{1}{2}I_{2}$$
 (6)

is +213 kJ mol⁻¹. There is no energy source of this magnitude in the ESI-MS experiment, and taken with the above arguments, we conclude that the peak at m/z = 253.8 is that of I_4^{2-} . The presence of HI_4^{-} in aqueous I_2/KI solutions (Fig. 1) confirms this identification.

All species in the gas phase. Numerical values (in kJ mol⁻¹), and references:

c. (-) Electron affinity of I	-295	ref. 4	
d. (1/2) Bond energy of I_2	-75	ref. 4	
Scheme 1			

The presence of the I_4^{2-} ion in aqueous solutions of I⁻ and I_3^- was suggested some time ago by French and Effenberger¹⁵ to explain their spectrophotometric results for this system, and by Genser and Connick¹⁶ from NMR studies of solution phase exchange processes. In the present work, the ESI-MS of all $I_2/I^-/I_3^-$ solutions showed the peak at m/z = 253.8 only when both I_3^- and I⁻ were present, and only with aqueous solutions. Salts of I_4^{2-} have been structurally characterised;^{17,18} in each case, the anion is linear, and one result¹⁷ gives almost constant I–I bond distances [3.17 ± 0.84 (av.) Å], close to that calculated for I_3^- (r = 3.14 Å) by Hoffmann *et al.*⁵

The equilibrium

$$I_3^- + I^- \rightleftharpoons I_4^{2-} \tag{7}$$

will obviously be favored in solutions of relatively high $[I^-]$, and we have explored the possibility that the results reported by Davies and Gwynne⁹ can be explained by the presence of the

245

Table 1 Re-calculation of results on the equilibrium $I_2 + I^- = I_3^-$, from ref. 9

Expt. in Table I of ref. 9	$[I^-]_{total}/M$	<i>K</i> ₃ ′	[I ₄ ²⁻]/M	<i>K</i> ₄
1	1.069	1287	Negative value	
2	1.059	1086	0.27	23 (!)
3	1.059	1058	0.064	0.67
4	1.039	954	0.065	0.66
5	1.032	906	0.035	0.35
6	1.014	863	0.013	0.18
7	1.008	798	0.0019	0.45
8	1.004	784	3.94×10^{-4}	0.23
9	0.101	791	Negative value	
10	0.1002	773	5.03×10^{-4}	0.48

 I_4^{2-} anion, rather than I_5^- or I_6^{2-} . If the dissolution of I_2 in aq. KI leads to the formation of I_3^- and I_4^{2-} , their values for $[I_3^-]$ should be corrected to

$$[I_3^{-}] = [I_3^{-}]' - [I_4^{2-}]$$
(8)

where $[I_3^{-}]'$ represents the reported concentration of I_3^{-} . Equally, their values of concentration of I⁻ are too high by the quantity $2[I_4^{2-}]$, since

$$[I^{-}]_{\text{total}} = [I^{-}]' + [I_{3}^{-}] + 2[I_{4}^{2^{-}}]$$
(9)

One can then write

$$K_{3} = \frac{([I_{3}^{-}]' - [I_{4}^{2-}])}{[I_{2}]([I^{-}]' - 2[I_{4}^{2-}])}$$
(10)

where $[I_3^{-}]'$ and $[I^{-}]'$ are the experimental values in Table I of the paper by Davies and Gwynne. For internal consistency, we have taken the value $K_3 = 767$ at 25 °C from this paper. The results of these calculations are shown in Table 1, in which K_{3}' is the uncorrected experimental value found in ref. 9, and K_4 is the equilibrium constant for eqn. (7). The average value of K_4 (ignoring the value $K_4 = 23$) is 0.43 \pm 0.13. By way of comparison, French and Effenberger report $K_4 = 0.184$ in 2 M KNO₃.¹⁵

The spread of the derived values for K_4 is not surprising; a feature of the calculation is that the subtraction of two similar numbers (in the order of 0.5 M) to give a concentration of I_4^{2} in the order of 0.01 M or less, and this obviously introduces a large uncertainty into the final value of K_4 . It should also be noted that Table I of ref. 10 appears to contain some misprints, since K_{3}' cannot always be derived from the experimental results reported. Finally, we note that the experiments at the highest $[I^-]_{total}$ give either a negative value for $[I_4^{2-}]$, or an unacceptably high value, which may be evidence of the presence of yet further species in addition to I^- , I_3^- and I_4^{2-} in such solutions. This concentration region is not accessible to investigation by ESI-MS under the conditions available to us.

(iii) Aqueous I_2 + KCl, KBr. These two systems are conveniently considered together. Fig. 3 is a typical ESI-MS, in this

Fig. 3 ESI-MS of an aqueous solution of I_2 (0.56 mM) + KBr (0.25 mM).

Dalton Trans., 2003, 244-248

case of saturated I_2 + KBr (mole ratio I_2 : Br = 1 : 446); in addition to Br⁻ and I⁻ (not shown), the spectrum identifies the presence of Br_3^- , Br_2I^- , I_2Br^- and I_3^- , together with $[K_nBr_{n+1}]^$ clusters up to n = 3; each of these assignments was confirmed by matching with the calculated isotopic distribution. An analogous I_2 + KCl mixture had peaks from $I^- > ICl_2^- > I_2Cl^- > I_3^$ in the intensity order shown.

The reactions which can lead to these results, as exemplified by the I_2/Br^- system, are of the type

$$I_2 + Br^- \rightleftharpoons I_2 Br^- \tag{11}$$

$$I_2Br^- \rightleftharpoons IBr + I^-$$
 (12)

$$IBr + Br^{-} \rightleftharpoons IBr_{2}^{-}$$
 (13)

$$IBr_2^{-} \rightleftharpoons Br_2 + I^{-} \tag{14}$$

$$Br_2 + Br^- \rightleftharpoons Br_3^-$$
 (15)

and the overall effect is to establish the series $X_3^- \rightleftharpoons X_2 Y^- \rightleftharpoons$ $XY_2^- \rightleftharpoons Y_3^-$. Such redistribution processes, rapid on the time scale of this work, are common in main group solution chemistry. It is unnecessary to identify such processes as redox reactions, as other authors have done,^{1,2,19} and we return to this point in more detail for the I₂/thiocyanate system. It is equally inappropriate, in the light of the ESI-MS results, to consider the dissociation of an XY₃⁻ polyhalide anion in terms of a single process

$$XY_2^- \rightleftharpoons XY + Y^- \tag{16}$$

since the solution equilibria are more complicated than this, as set out in eqns. (11)-(15). The nature of the ESI-MS analysis does not allow any quantification of these equilibria.

(iv) Aqueous I_2/KCl ; the ICl_4^- anion. An unexpected feature of the ESI-MS of $I_2 + 0.5$ M KCl was a series of peaks centred at m/z = 268.7, identified by the isotopic composition as being ICl_{4}^{-} . The presence of this iodine(III) species, which was not apparently identified in previous work on I₂/Cl⁻ systems clearly, demonstrates the oxidation of I₂, and we tentatively suggest the sequence (cf. eqns. 11, 12 and 14)

T (1)

$$I_2 + Cl^- \rightleftharpoons I_2 Cl^-$$
(17)

$$I_2Cl^- \rightleftharpoons ICl + I^-$$
 (18)

$$2ICl \rightleftharpoons I_2 + Cl_2 \tag{19}$$

$$I^- + Cl_2 \rightleftharpoons ICl_2^-$$
(20)

$$\mathrm{ICl}_{2}^{-} + \mathrm{Cl}_{2} \rightleftharpoons \mathrm{ICl}_{4}^{-} \tag{21}$$

The thermal stability of crystalline salts of ICl₄⁻ has been studied by Smyth and Culter²⁰ who have reviewed earlier work on these compounds. The dissociation vapour pressure over the temperature range 35–90 $^{\circ}\mathrm{C}$ was interpreted in terms of the decomposition processes

$$\mathrm{KICl}_4 \longrightarrow \mathrm{KlCl}_2 + \mathrm{Cl}_2 \tag{22}$$

$$\text{KICl}_2 \longrightarrow \text{KCl} + \text{ICl}$$
 (23)

which correspond to the solution processes (21) + (20). In contrast, Caglioti and Centola²¹ reported that dissociation gives KCl directly without the intermediate formation of KICl₂. Fig. 4 shows that the decomposition of $[I(^{35}Cl)_4]^-$ under the conditions of ESI-MS goes by the sequence

$$\operatorname{ICl}_{4}^{-} \xrightarrow{\operatorname{-Cl}^{*}} \operatorname{-ICl}_{3}^{*} \xrightarrow{\operatorname{-Cl}^{*}} \operatorname{ICl}_{2}^{-}$$
(24)

while a corresponding study of ICl_2^- demonstrated that this ion is stable under analogous conditions. These results confirm reaction (22), although the loss of Cl_2 is identified as involving successive elimination of two chlorine atoms rather than of Cl_2 . The radical anion ICl_3^{--} has not been identified previously, although the neutral analogue ICl_3 is well known.^{2,4}

(v) Aqueous I_2 + KNCS. As with the halide anions, the addition of excess aqueous KNCS solution (0.1 M) to I_2 gives rise to an ESI-MS in which a series of $[K_n(NCS)_{n+1}]^-$ anions accompany the species $[I(NCS)_2]^-$ and $[I_2(NCS)]^-$. There is no evidence of I_3^- and very little of the ion at m/z = 253.8, but the presence of I^- indicates the reduction of I_2 by NCS⁻, a known reaction.²

Both $[I(NCS)_2]^-$ and $[I_2(NCS)]^-$ have been identified spectrophotometrically by Skoog and Long;^{22,23} the latter was formulated as the 1 : 1 adduct of I₂ and NCS⁻, but the formation of $[I(NCS)_2]^-$ was attributed²¹ to the photochemically initiated redox reaction.

$$O_2 + 2I_2 + 8NCS^- + 4H^+ \xrightarrow{h\nu} 4[I(NCS)_2]^- + 2H_2O$$
 (25)

We do not believe that it is necessary to invoke such processes, given the evidence of redistribution reactions in I_2/X^- systems (see above), and the identification of both anionic species in non-aqueous solution. It is also worth noting that attempts to prepare salts of $[I(NCS)_2]^-$ gave a mixture of this and $[I_2(NCS)]^-$ derivatives,²⁴ in keeping with the proposed facile redistribution processes.

(vi) Aqueous I_2 + other anions. We also investigated the possible interaction of I_2 with other pseudohalides (NCO⁻, N_3^-), and with NO₂⁻ and OH⁻, but in no case were I_2X^- or IX_2^- adducts detected. The anion I_2OH^- has been invoked in discussions of the kinetics of the reaction of I_2 with H_2O in alkaline solution;²⁵ it is possible that this anion is sufficiently hydrophilic to be undetectable under the conditions of the ESI-MS experiment.

Acetonitrile solutions

(i) Iodine. The only anions detected in the ESI-MS of a solution of I_2 in CH₃CN (1 mM) were I_3^- (100%) and I^- (10%),

with essentially no (<1%) peak at m/z = 253.8. We argue above that this species is only found when both I_3^- and I^- are present in solution, but in this case the presence of I_3^- and I^- ions may be the result of trace amounts of I^- present either in the mass spectrometer or in the iodine sample. The sensitivity of the instrument is such that it can detect extremely low concentrations of charged species, and the ion current observed in this spectrum was several orders of magnitude lower than that observed in samples with added X⁻.

(ii) $I_2 + I^-$. A mixture of I_2 and Et_4NI (approx. 1 mM in each) showed a strong peak for I^- , and much weaker features for I_3 (~10%) and $[Et_4N\cdot I_2]^-$ (~5%). There was no detectable intensity at m/z = 253.8, and no anions higher than I_3^- . This is readily understandable; the stability constant for eqn. (1) in acetonitrile has been found to be in the order of 10⁷, so that under the experimental conditions I_2 is essentially completely consumed and only I_3^- and excess I^- are present.²⁶⁻²⁸

(iii) $I_2 + CI^-$, Br^- . A solution of equimolar (~1 mM) I_2 and BzEt₃NCl in CH₃CN gave the ESI-MS shown in Fig. 5. The

Fig. 5 ESI-MS of a solution of I_2 + BzEt_3NCl (each \sim 1 mM) in acetonitrile.

series $I_3^- - I_2Cl^- - ICl_3^-$ is apparent, as are $[BzEt_3NCl_2]^-$, and $[(BzEt_3N)_2Cl_3]^-$; I^- is also detected but there is no intensity at m/z = 253.8. The anion ICl_4^- (m/z = 268) is apparently absent. Similar results were found from a solution of $I_2 + Bu_4NBr$, with I^- , I_2Br^- and I_3^- being detected, together with $[Bu_4NBr_2]^-$.

(iv) $I_2 + NCS^-$. Fig. 6 confirms that an acetonitrile solution of $I_2 + Bu_4NNCS$ contains both $[I(NCS)_2]^-$ and $[I_2(NCS)]^-$, together with I_3^- and I_3 , in agreement with the results from the corresponding aqueous solution.

Fig. 6 ESI-MS of a solution of I_2 + Bu_4NNCS (each ~ 1 mM) in acetonitrile.

(v) Br_3^- . The ESI-MS of a dilute solution of n-Bu₄NBr₃ in acetonitrile showed Br_3^- as the only significant anion in the region m/z > 100, together with traces of $Bu_4NBr_2^-$; there was no evidence of higher species such as Br_4^{2-} . When Cl⁻ (in the form of BzMe₃NCl) was added to this solution, the ions Cl₃⁻, BrCl₂⁻ and Br₂Cl⁻ were also observed, together with the appropriate anionic cluster derivatives of Bu_4N^+ and BzMe₃⁺.

General conclusions

Electrospray ionisation mass spectrometry is clearly a very useful technique for identifying the anionic species present in aqueous and non-aqueous solutions containing I₂ and various halide and pseudohalide salts. The results show that in each case I_2X^- and IX_2^- (X = Cl, Br, NCS) species co-exist, being formed by redistribution processes; redox and/or photochemically induced reactions need not be invoked to explain this. Similar conclusions apply to the formation of Br₂Cl⁻ and BrCl₂⁻ from Br₃⁻ and Cl⁻ in acetonitrile. Although the ESI-MS results cannot yield quantitative information as to the speciation in such solutions, it is clear that the dissociation of I_2X^- species, and by extension of other XY_2^- anions, cannot be satisfactorily explained in terms of a single $XY_2^- \rightleftharpoons X^- + Y_2$ process, since the solutions in question contain both the products of the primary dissociation and those derived from the subsequent redistribution process.

This *caveat* is well exemplified by the identification of the ICl_4^- anion in aqueous solutions of $I_2 + KCl$. The decomposition to the hitherto unreported ICl_3^- radical anion is another unusual feature of this system.

Finally, deviations from ideality in the I_2/I^- aqueous system at high I⁻ concentrations cannot be explained in terms of I_5^- (or I_6^-), for whose existence we find no evidence under conditions which should favour the formation of this anion. The observations of a significant species at m/z = 253.8, and of HI_4^- , show that this long-standing problem can be explained in terms of the formation of I_4^{2-} by the interaction of I_3^- and I^- at high ionic strength.

Acknowledgements

One of us (D. G. T.) gratefully acknowledges financial support from the Royal Society of Chemistry for a Journals Grant. Thanks are also due to Newnham and Trinity Colleges, Cambridge for a college lectureship (J. S. M.).

References

- 1 A. I. Popov, *Halogen Chemistry*, ed. V. Gutmann, Academic Press, NY, 1967, vol. I, p. 225.
- 2 A. J. Downs and C. J. Adams, *Comprehensive Inorganic Chemistry*, ed. J. C. Bailar, H. J. Emeleus, R. S. Nyholm and A. F. Trotman-Dickenson, Pergamon, Oxford, 1973, vol. II, p. 1534 et seq.
- 3 E. H. Wiebenga, E. E. Havinga and K. H. Boswijk, Adv. Inorg. Chem. Radiochem., 1963, 3, 133.
- 4 N. N. Greenwood and A. Earnshaw, *Chemistry of the Elements*, Pergamon, Oxford, 2nd edn., p. 835.
- 5 G. A. Landrum, N. Goldberg and R. Hoffmann, J. Chem. Soc., Dalton Trans., 1997, 3605.
- 6 R. W. Ramette and R. W. Sandford, J. Am. Chem. Soc., 1965, 87, 5001.
- 7 W. C. Bray and G. M. J. MacKay, J. Am. Chem. Soc., 1910, 32, 914.
- 8 G. Daniele, Gazz. Chim. Ital., 1960, 90, 1068.
- 9 M. Davies and E. Gwynne, *J. Am. Chem. Soc.*, 1952, **74**, 2748. 10 G. D. Wang and R. B. Cole, *Anal. Chem.*, 1998, **70**, 873.
- D. Walg and K. B. Cole, Anal. Chem., 1996, 76, 875.
 J. F. Anacleto, S. Pleasance and R. K. Boyd, Org. Mass Spectrom., 1992. 27, 660.
- 12 C. Hasselgren, K. Fisher, S. Jagner and I. Dance, *Chem. Eur. J.*, 2000, 6, 3671.
- 13 R. J. Hach and R. E. Rundle, J. Am. Chem. Soc., 1951, 73, 4321.
- 14 W. B. Person, J. Chem. Phys., 1963, 38, 109.
- 15 D. French and J. A. Effenberger, *Abstr. Pap. Am. Chem. Soc.*, 1961, 25T.
- 16 E. T. Genser and R. E. Connick, J. Chem. Phys., 1973, 58, 990.
- 17 A. Rabenau, H. Schulz and W. Stoeger, *Naturwissenschaften*, 1976, 63, 245.
- 18 E. Dubler and I. Linowsky, *Helv. Chim. Acta*, 1978, **58**, 2604.
- 19 D. L. Cason and H. M. Neumann, J. Am. Chem. Soc., 1961, 83, 1822.
- 20 D. M. Smyth and M. E. Cutler, J. Am. Chem. Soc., 1958, 80, 4462.
- 21 V. Caglioti and G. Centola, Gazz. Chim. Ital., 1933, 63, 907.
- 22 C. Long and D. H. Skoog, J. Am. Chem. Soc., 1962, 84, 1101.
- 23 C. Long and D. A. Skoog, Inorg. Chem., 1966, 5, 206.
- 24 G. A. Bowmaker and D. H. Rogers, J. Chem. Soc., Dalton Trans., 1981, 1146.
- 25 J. Sigalla, Nature, 1959, 183, 178; J. Sigalla, J. Chim. Phys., 1961, 58, 602.
- 26 J. Desbarres, Bull. Soc. Chim. Fr., 1961, 955.
- 27 N. E. Skelly, (1955) quoted in ref. 25.
- 28 I. V. Nelson and R. T. Iwamoto, J. Electroanal. Chem., 1964, 7, 218.