NAME:								
		[223]	55 132.91	37 Rb 85.468	39.098 大 19	11 Na 22.990	6.941	1.0079 H 1
⁺actin	lanthan	88 [226]	56 Ba 137.33	38 Sr 87.62	20 Ca 40.078	12 Mg 24.305	4 Be 9.0122	IA N
ides	ides	89- ‡	57- 70					
89 Ac [227]	57 La 138.91	[262]	71 Lu 174.97	39 ★ 88.906	21 Sc 44.956		Ato Ato	llB ω
90 Th 232.04	58 Ce 140.12	[261]	72 Hf 178.49	40 91.224	22 Ti 47.867		mic numt Symbo omic weigt	KB 4
91 Pa 231.04	59 Pr 140.91	105 [262]	73 Ta 180.95	41 92.906	23 < 50.942		≓ — er	წ თ
92 U 238.03	60 Nd 144.24	106 [266]	74 183.84	42 Mo 95.94	24 Cr 51.996			VIB €
93 Np [237]	61 Pm [145]	107 [264]	75 Re 186.21	[98]	25 Mn 54.938			7 VIIB
94 Pu [244]	62 Sm 150.36	[269]	76 Os 190.23	101.07	26 Fe 55.845			œ
95 Am [243]	63 Eu	109 Mt [268]	77 Ir 192.22	45 Rh 102.91	27 Co 58.933	-		6 III>
96 Cm [247]	64 Gd 157.25	110 Ds [281]	78 Pt 195.08	46 Pd 106.42	28 Ni 58.693			10
97 Bk [251]	65 Tb 158.93	111 Rg [272]	79 Au 196.97	47 Ag 107.87	29 Cu 63.546	-		в 11
98 [251]	66 Dy 162.50		80 200.59	48 Cd 112.41	30 65.39			IIB
99 Es	67 Ho 164.93		81 T 204.38	49 In 114.82	31 Ga 69.723	13 A 26.982	10.811	13 IIIA
100 Fm [257]	68 Er 167.26		82 Pb 207.2	50 Sn 118.71	32 Ge 72.61	14 28.086	6 12.011	14 IVA
101 Md [258]	69 Tm 168.93		208.98	51 Sb 118.71	33 As 74.922	15 P 30.974	7 N 14.007	15 VA
102 No [259]	70 Yb 173.04		Po [209]	52 Te 127.60	34 Se ^{78.96}	3 2.065	15.999	16 VIA
	I		At 85	53 126.90	35 Br 79.904	17 35.453	9 18.998	17 VIIA
			[222]	54 Xe 131.29	83.80 83.80	18 Ar 39.948	10 Ne 20.180	18 VIIIA 2 4.0026

423/523 Organometallic Chemistry Mid-term, 8:30 am Friday 16th November 2012 50 minutes, 50 marks.

1. Examine the scheme below (L = phosphine). Fill in the boxes with the appropriate structures and give electron counts and oxidation states for all palladium complexes. Write down the overall reaction, and name reactions **A**, **B**, **C** and **D**.

[10 marks]

2. Draw the product(s) of the reaction between Grubbs' second generation catalyst and one equivalent of norbornene. Your scheme should indicate the mechanism and include an intermediate. What happens if you then add one equivalent of 1-hexene? Draw the product(s).

3. Predict the products of the addition of PMe₃ to the complex shown below, showing the structure of each and the expected relative distributions. Note: the products include all the atoms of the original complex and of the PMe₃. Choose ONE of the products, and describe in as much detail as you can its v(CO) IR spectrum and its ³¹P NMR spectrum (proton decoupled).

[8 marks]

³¹P NMR: 2P doublet (${}^{2}J_{P-P}$), 1P triplet (${}^{2}J_{P-P}$). Signals will be at higher ppm value compared to free phosphine.

4. Explain the difference between homogeneous and heterogeneous catalysts and detail the advantages/disadvantages of both.

[10 marks]

Straight from notes, i.e.

	Homogeneous	Heterogeneous
Form	Soluble metal complexes, usually mononuclear	Metals, usually supported, or metal oxides
Active site	well-defined, discrete molecules	poorly defined
Phase	Liquid	Gas/solid
Temperature	Low (<250°C)	High (250 – 500°C)
Activity	Moderate	High
Selectivity	High	Low
Diffusion	Facile	Can be very important
Heat transfer	Facile	Can be problematic
Product separation	Generally problematic	Facile
Catalyst recycle	Expensive	Simple
Catalyst modification	Easy	Difficult
Reaction mechanisms	Reasonably well understood	Poorly understood

5. Use the Davies-Green-Mingos rules to predict the products of the reactions between the following complexes and RS⁻. Briefly explain why the nucleophile chooses that particular site of attack.

[8 marks]

even before odd
open before closed

